Files
Varanus/NOCQ.ndproj
2014-05-23 19:51:13 -04:00

4069 lines
214 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<NDepend AppName="NOCQ" Platform="DotNet">
<OutputDir KeepXmlFiles="False">D:\varanas\NDependOut</OutputDir>
<Assemblies>
<Name>NOCQ</Name>
<Name>NOCQ.Application</Name>
</Assemblies>
<FrameworkAssemblies>
<Name>mscorlib</Name>
<Name>System.ComponentModel.Composition</Name>
<Name>System</Name>
<Name>System.Core</Name>
<Name>Newtonsoft.Json</Name>
<Name>Microsoft.CSharp</Name>
<Name>AE.Net.Mail</Name>
<Name>csredis</Name>
</FrameworkAssemblies>
<Dirs>
<Dir>D:\varanas\src\NOCQ\bin\Debug</Dir>
<Dir>D:\varanas\src\NOCQ.Application\bin\Debug</Dir>
<Dir>C:\Windows\Microsoft.NET\Framework\v4.0.30319</Dir>
<Dir>C:\Windows\Microsoft.NET\Framework\v4.0.30319\WPF</Dir>
</Dirs>
<Report Kind="0" SectionsEnabled="45055" XslPath="" Flags="64512" />
<BuildComparisonSetting ProjectMode="DontCompare" BuildMode="MostRecentAnalysisResultAvailable" ProjectFileToCompareWith="" BuildFileToCompareWith="" NDaysAgo="1" FocusOnRecentRulesViolations="False" />
<BaselineInUISetting ProjectMode="DontCompare" BuildMode="MostRecentAnalysisResultAvailable" ProjectFileToCompareWith="" BuildFileToCompareWith="" NDaysAgo="1" FocusOnRecentRulesViolations="False" />
<CoverageFiles UncoverableAttribute="" />
<TrendMetrics UseCustomLog="False" LogRecurrence="3" LogLabel="2" UseCustomDir="False" CustomDir="">
<Chart Name="Lines of Code" ShowInReport="True">
<Serie MetricName="# Lines of Code" MetricUnit="Loc" Color="#FF00BFFF" ChartType="Line" ScaleExp="0" />
<Serie MetricName="# Lines of Code Covered" MetricUnit="Loc" Color="#FF32CD32" ChartType="Area" ScaleExp="0" />
<Serie MetricName="# Lines of Code (NotMyCode)" MetricUnit="Loc" Color="#FFA9A9A9" ChartType="Area" ScaleExp="0" />
<Serie MetricName="# Lines of Comments" MetricUnit="Lines" Color="#FF008000" ChartType="Line" ScaleExp="0" />
</Chart>
<Chart Name="Rules Violated" ShowInReport="True">
<Serie MetricName="# Rules" MetricUnit="Rules" Color="#FF66CDAA" ChartType="Line" ScaleExp="0" />
<Serie MetricName="# Rules Violated" MetricUnit="Rules" Color="#FFFF8C00" ChartType="Area" ScaleExp="0" />
<Serie MetricName="# Critical Rules Violated" MetricUnit="Rules" Color="#FFFF0000" ChartType="Area" ScaleExp="0" />
</Chart>
<Chart Name="Rules Violations" ShowInReport="True">
<Serie MetricName="# Rules Violations" MetricUnit="Violations" Color="#FFFF8C00" ChartType="Area" ScaleExp="0" />
<Serie MetricName="# Critical Rules Violations" MetricUnit="Violations" Color="#FFFF0000" ChartType="Area" ScaleExp="0" />
</Chart>
<Chart Name="Percentage Coverage by Tests" ShowInReport="True">
<Serie MetricName="Percentage Code Coverage" MetricUnit="%" Color="#FF32CD32" ChartType="Area" ScaleExp="0" />
</Chart>
<Chart Name="Max" ShowInReport="True">
<Serie MetricName="Max IL Cyclomatic Complexity for Methods" MetricUnit="Paths" Color="#FFFF0000" ChartType="Line" ScaleExp="0" />
<Serie MetricName="Max # Lines of Code for Methods (JustMyCode)" MetricUnit="LoC" Color="#FF0000FF" ChartType="Line" ScaleExp="0" />
<Serie MetricName="Max # of Methods for Types" MetricUnit="Methods" Color="#FF32CD32" ChartType="Line" ScaleExp="0" />
<Serie MetricName="Max IL Nesting Depth for Methods" MetricUnit="Scopes" Color="#FFFFD700" ChartType="Line" ScaleExp="0" />
</Chart>
<Chart Name="Average" ShowInReport="True">
<Serie MetricName="Average IL Cyclomatic Complexity for Methods" MetricUnit="Paths" Color="#FFFF0000" ChartType="Line" ScaleExp="0" />
<Serie MetricName="Average # Lines of Code for Methods" MetricUnit="LoC" Color="#FF0000FF" ChartType="Line" ScaleExp="0" />
<Serie MetricName="Average # Methods for Types" MetricUnit="Methods" Color="#FF32CD32" ChartType="Line" ScaleExp="0" />
<Serie MetricName="Average IL Nesting Depth for Methods" MetricUnit="Scopes" Color="#FFFFD700" ChartType="Line" ScaleExp="0" />
</Chart>
<Chart Name="Third-Party Usage" ShowInReport="True">
<Serie MetricName="# Third-Party Types Used" MetricUnit="Types" Color="#FF0000FF" ChartType="Line" ScaleExp="0" />
<Serie MetricName="# Third-Party Methods Used" MetricUnit="Methods" Color="#FFFF0000" ChartType="Line" ScaleExp="0" />
<Serie MetricName="# Third-Party Assemblies Used" MetricUnit="Assemblies" Color="#FF646464" ChartType="Line" ScaleExp="1" />
<Serie MetricName="# Third-Party Namespaces Used" MetricUnit="Namespaces" Color="#FF32CD32" ChartType="Line" ScaleExp="1" />
<Serie MetricName="# Third-Party Fields Used" MetricUnit="Fields" Color="#FFFFD700" ChartType="Line" ScaleExp="1" />
</Chart>
</TrendMetrics>
<HistoricAnalysisResult PersistRecurrence="2" UseCustomDir="False" CustomDir="" />
<SourceFileRebasing FromPath="" ToPath="" />
<PathVariables />
<Queries>
<Group Name="Code Quality" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Types too big - critical</Name>
warnif count > 0 from t in JustMyCode.Types where
t.NbLinesOfCode > 500
// We've commented # IL Instructions, because with LINQ syntax, a few lines of code can compile to hundreds of IL instructions.
// || t.NbILInstructions > 3000
orderby t.NbLinesOfCode descending
select new { t, t.NbLinesOfCode, t.NbILInstructions,
t.Methods, t.Fields }
// Types where NbLinesOfCode > 500 are extremely complex
// and should be split in a smaller group of types.
// See the definition of the NbLinesOfCode metric here
// http://www.ndepend.com/Metrics.aspx#NbLinesOfCode
// In average, a line of code is compiled to around
// 6 IL instructions. This is why the code metric
// NbILInstructions is used here, in case the
// code metric NbLinesOfCode is un-available because
// of missing assemblies corresponding PDB files.
// See the definition of the NbILInstructions metric here
// http://www.ndepend.com/Metrics.aspx#NbILInstructions
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Methods too complex - critical</Name>
warnif count > 0 from m in JustMyCode.Methods where
m.ILCyclomaticComplexity > 40 &&
m.ILNestingDepth > 5
orderby m.ILCyclomaticComplexity descending,
m.ILNestingDepth descending
select new { m, m.ILCyclomaticComplexity, m.ILNestingDepth }
// Methods with ILCyclomaticComplexity > 40 and ILNestingDepth > 4
// are really too complex and should be split
// in smaller methods, or even types.
// See the definition of the ILCyclomaticComplexity metric here
// http://www.ndepend.com/Metrics.aspx#ILCC
// See the definition of the ILNestingDepth metric here
// http://www.NDepend.com/Metrics.aspx#ILNestingDepth]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Methods with too many parameters - critical</Name>
warnif count > 0 from m in JustMyCode.Methods where
m.NbParameters > 8
orderby m.NbParameters descending
select new { m, m.NbParameters }
// Methods with more than 8 parameters might be painful to call
// and might degrade performance. You should prefer using
// additional properties/fields to the declaring type to
// handle numerous states. Another alternative is to provide
// a class or structure dedicated to handle arguments passing
// (for example see the class System.Diagnostics.ProcessStartInfo
// and the method System.Diagnostics.Process.Start(ProcessStartInfo))
// See the definition of the NbParameters metric here
// http://www.ndepend.com/Metrics.aspx#NbParameters
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Quick summary of methods to refactor</Name>
warnif count > 0 from m in JustMyCode.Methods where
// Code Metrics' definitions
m.NbLinesOfCode > 30 || // http://www.ndepend.com/Metrics.aspx#NbLinesOfCode
// We've commented # IL Instructions, because with LINQ syntax, a few lines of code can compile to hundreds of IL instructions.
// m.NbILInstructions > 200 || // http://www.ndepend.com/Metrics.aspx#NbILInstructions
m.CyclomaticComplexity > 20 || // http://www.ndepend.com/Metrics.aspx#CC
m.ILCyclomaticComplexity > 50 || // http://www.ndepend.com/Metrics.aspx#ILCC
m.ILNestingDepth > 5 || // http://www.ndepend.com/Metrics.aspx#ILNestingDepth
m.NbParameters > 5 || // http://www.ndepend.com/Metrics.aspx#NbParameters
m.NbVariables > 8 || // http://www.ndepend.com/Metrics.aspx#NbVariables
m.NbOverloads > 6 // http://www.ndepend.com/Metrics.aspx#NbOverloads
select new { m, m.NbLinesOfCode, m.NbILInstructions, m.CyclomaticComplexity,
m.ILCyclomaticComplexity, m.ILNestingDepth,
m.NbParameters, m.NbVariables, m.NbOverloads } ]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods too big</Name>
warnif count > 0 from m in JustMyCode.Methods where
m.NbLinesOfCode > 30
// We've commented # IL Instructions, because with LINQ syntax, a few lines of code can compile to hundreds of IL instructions.
// || m.NbILInstructions > 200
orderby m.NbLinesOfCode descending,
m.NbILInstructions descending
select new { m, m.NbLinesOfCode, m.NbILInstructions }
// Methods where NbLinesOfCode > 30 or NbILInstructions > 200
// are extremely complex and should be split in smaller methods.
// See the definition of the NbLinesOfCode metric here
// http://www.ndepend.com/Metrics.aspx#NbLinesOfCode]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods too complex</Name>
warnif count > 0 from m in JustMyCode.Methods where
m.CyclomaticComplexity > 20 ||
m.ILCyclomaticComplexity > 40 ||
m.ILNestingDepth > 5
orderby m.CyclomaticComplexity descending,
m.ILCyclomaticComplexity descending,
m.ILNestingDepth descending
select new { m, m.CyclomaticComplexity,
m.ILCyclomaticComplexity,
m.ILNestingDepth }
// Methods where CyclomaticComplexity > 20
// or ILCyclomaticComplexity > 40
// or ILNestingDepth > 4
// are hard to understand and maintain
// and should be split in smaller methods.
// See the definition of the complexity metrics here:
// http://www.ndepend.com/Metrics.aspx#CC
// http://www.ndepend.com/Metrics.aspx#ILCC
// http://www.NDepend.com/Metrics.aspx#ILNestingDepth]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods potentially poorly commented</Name>
warnif count > 0 from m in JustMyCode.Methods where
m.PercentageComment < 20 &&
m.NbLinesOfCode > 20
orderby m.PercentageComment ascending
select new { m, m.PercentageComment, m.NbLinesOfCode, m.NbLinesOfComment }
// Methods where %Comment < 20 and that have
// at least 20 lines of code might need to be more commented.
// See the definition of the Comments metric here
// http://www.ndepend.com/Metrics.aspx#PercentageComment
// http://www.ndepend.com/Metrics.aspx#NbLinesOfComment ]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods with too many parameters</Name>
warnif count > 0 from m in JustMyCode.Methods where
m.NbParameters > 5
orderby m.NbParameters descending
select new { m, m.NbParameters }
// Methods where NbParameters > 5 might be painful to call
// and might degrade performance. You should prefer using
// additional properties/fields to the declaring type to
// handle numerous states. Another alternative is to provide
// a class or structure dedicated to handle arguments passing
// (for example see the class System.Diagnostics.ProcessStartInfo
// and the method System.Diagnostics.Process.Start(ProcessStartInfo))
// See the definition of the NbParameters metric here
// http://www.ndepend.com/Metrics.aspx#NbParameters]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods with too many local variables</Name>
warnif count > 0 from m in JustMyCode.Methods where
m.NbVariables > 15
orderby m.NbVariables descending
select new { m, m.NbVariables }
// Methods where NbVariables > 8 are hard to understand and maintain.
// Methods where NbVariables > 15 are extremely complex
// and should be split in smaller methods.
// See the definition of the Nbvariables metric here
// http://www.ndepend.com/Metrics.aspx#Nbvariables]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods with too many overloads</Name>
warnif count > 0 from m in JustMyCode.Methods where
m.NbOverloads > 6 &&
!m.IsOperator // Don't report operator overload
orderby m.NbOverloads descending
select new { m, m.NbOverloads }
// Methods where NbOverloads > 6 might
// be a problem to maintain and provoke higher coupling
// than necessary.
// This might also reveal a potential misused of the
// C# and VB.NET language that since C#3 and VB9 support
// object initialization. This feature helps reducing the number
// of constructors of a class.
// See the definition of the NbOverloads metric here
// http://www.ndepend.com/Metrics.aspx#NbOverloads]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types with too many methods</Name>
warnif count > 0 from t in JustMyCode.Types where
t.Methods.Count() > 20
orderby t.Methods.Count() descending
select new { t, t.InstanceMethods, t.StaticMethods }
// Types where Methods.Count() > 20 might be hard to
// understand and maintain
// but there might be cases where it is relevant
// to have a high number of methods.
// For example, the System.Windows.Forms.DataGridView
// standard class has more than 1000 methods.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types with too many fields</Name>
warnif count > 0 from t in JustMyCode.Types where
t.Fields.Count() > 20 &&
!t.IsEnumeration
orderby t.Fields.Count() descending
select new { t, t.InstanceFields, t.StaticFields, t.SizeOfInst }
// Types where Fields.Count() > 20 and not IsEnumeration
// might be hard to understand and maintain
// but there might be cases where it is relevant
// to have a high number of fields.
// For example, the System.Windows.Forms.Control
// standard class has more than 200 fields.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types with poor cohesion</Name>
warnif count > 0 from t in JustMyCode.Types where
(t.LCOM > 0.8 || t.LCOMHS > 0.95) &&
t.NbFields > 10 &&
t.NbMethods >10
orderby t.LCOM descending, t.LCOMHS descending
select new { t, t.LCOM, t.LCOMHS,
t.NbMethods, t.NbFields }
// Types where LCOM > 0.8 and NbFields > 10
// and NbMethods >10 might be problematic.
// However, it is very hard to avoid such
// non-cohesive types. The LCOMHS metric
// is often considered as more efficient to
// detect non-cohesive types.
// See the definition of the LCOM metric here
// http://www.ndepend.com/Metrics.aspx#LCOM]]></Query>
</Group>
<Group Name="Code Quality Regression" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>From now, all methods added or refactored should respect basic quality principles</Name>
warnif count > 0 from m in JustMyCode.Methods where
// *** Only new or modified methods since Baseline for Comparison ***
(m.WasAdded() || m.CodeWasChanged()) &&
// Low Quality methods// Metrics' definitions
( m.NbLinesOfCode > 30 || // http://www.ndepend.com/Metrics.aspx#NbLinesOfCode
m.NbILInstructions > 200 || // http://www.ndepend.com/Metrics.aspx#NbILInstructions
m.CyclomaticComplexity > 20 || // http://www.ndepend.com/Metrics.aspx#CC
m.ILCyclomaticComplexity > 50 || // http://www.ndepend.com/Metrics.aspx#ILCC
m.ILNestingDepth > 4 || // http://www.ndepend.com/Metrics.aspx#ILNestingDepth
m.NbParameters > 5 || // http://www.ndepend.com/Metrics.aspx#NbParameters
m.NbVariables > 8 || // http://www.ndepend.com/Metrics.aspx#NbVariables
m.NbOverloads > 6 )
select new { m, m.NbLinesOfCode, m.NbILInstructions, m.CyclomaticComplexity,
m.ILCyclomaticComplexity, m.ILNestingDepth,
m.NbParameters, m.NbVariables, m.NbOverloads } // http://www.ndepend.com/Metrics.aspx#NbOverloads
// This rule warns if a method with
// low-quality has been added or refactored.
// With NDepend and such rule, you can
// Ensure Quality From Now! as explained here:
// http://codebetter.com/blogs/patricksmacchia/archive/2008/01/01/ensure-the-quality-of-the-code-that-will-be-developed-this-year.aspx
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>From now, all types added or refactored should respect basic quality principles</Name>
warnif count > 0 from t in JustMyCode.Types where
// *** Only match new or modified types since Baseline for Comparison ***
(t.WasAdded() || t.CodeWasChanged()) &&
// Eliminate interfaces, enumerations or types only with constant fields
// by making sure we are matching type with code.
t.NbLinesOfCode > 10 &&
// Low Quality types Metrics' definitions are available here:
// http://www.ndepend.com/Metrics.aspx#MetricsOnTypes
( // Types with too many methods
t.NbMethods > 20 ||
// Types with too many fields
t.NbFields > 20 ||
// Complex Types that use more than 50 other types
t.NbTypesUsed > 50
)
select new { t, t.Methods, t.Fields, t.TypesUsed }
// This rule warns if a type with
// low-quality has been added or refactored.
// With NDepend and such rule, you can
// Ensure Quality From Now! as explained here:
// http://codebetter.com/blogs/patricksmacchia/archive/2008/01/01/ensure-the-quality-of-the-code-that-will-be-developed-this-year.aspx
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>From now, all types added or refactored should be 100% covered by tests</Name>
warnif count > 0 from t in JustMyCode.Types where
// Match methods new or modified since Baseline for Comparison...
(t.WasAdded() || t.CodeWasChanged()) &&
// ...that are not 100% covered by tests
t.PercentageCoverage < 100
let methodsCulprit = t.Methods.Where(m => m.PercentageCoverage < 100)
select new { t, t.PercentageCoverage, methodsCulprit }
// Having types 100% covered by tests is a good idea because
// the small portion of code hard to cover, is also the
// portion of code that is the most likely to contain bugs.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid decreasing code coverage by tests of types</Name>
// To visualize changes in code, right-click a matched type and select:
// - Compare older and newer versions of source file
// - Compare older and newer versions disassembled with Reflector
warnif count > 0
from t in JustMyCode.Types where
t.IsPresentInBothBuilds() &&
t.PercentageCoverage < t.OlderVersion().PercentageCoverage
select new { t,
OldCov = t.OlderVersion().PercentageCoverage,
NewCov = t.PercentageCoverage,
OldLoc = t.OlderVersion().NbLinesOfCode,
NewLoc = t.NbLinesOfCode,
}
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types that used to be 100% covered but not anymore</Name>
warnif count > 0
from t in JustMyCode.Types where
t.IsPresentInBothBuilds() &&
t.OlderVersion().PercentageCoverage == 100 &&
t.PercentageCoverage < 100
let culpritMethods = t.Methods.Where(m => m.PercentageCoverage < 100)
select new {t, t.PercentageCoverage, culpritMethods }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid making complex methods even more complex (Source CC)</Name>
// To visualize changes in code, right-click a matched method and select:
// - Compare older and newer versions of source file
// - Compare older and newer versions disassembled with Reflector
warnif count > 0
from m in JustMyCode.Methods where
!m.IsAbstract &&
m.IsPresentInBothBuilds() &&
m.CodeWasChanged()
let oldCC = m.OlderVersion().CyclomaticComplexity
where oldCC > 6 && m.CyclomaticComplexity > oldCC
select new { m,
oldCC ,
newCC = m.CyclomaticComplexity ,
oldLoc = m.OlderVersion().NbLinesOfCode,
newLoc = m.NbLinesOfCode,
}
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid making complex methods even more complex (IL CC)</Name>
// To visualize changes in code, right-click a matched method and select:
// - Compare older and newer versions of source file
// - Compare older and newer versions disassembled with Reflector
warnif count > 0
from m in JustMyCode.Methods where
!m.IsAbstract &&
m.IsPresentInBothBuilds() &&
m.CodeWasChanged()
let oldCC = m.OlderVersion().ILCyclomaticComplexity
where oldCC > 10 && m.ILCyclomaticComplexity > oldCC
select new { m,
oldCC ,
newCC = m.ILCyclomaticComplexity ,
oldLoc = m.OlderVersion().NbLinesOfCode,
newLoc = m.NbLinesOfCode,
}
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid making large methods even larger</Name>
// To visualize changes in code, right-click a matched method and select:
// - Compare older and newer versions of source file
// - Compare older and newer versions disassembled with Reflector
warnif count > 0
from m in JustMyCode.Methods where
!m.IsAbstract &&
m.IsPresentInBothBuilds() &&
m.CodeWasChanged() &&
// Eliminate constructors from match, since they get larger
// as soons as some fields initialization are added.
!m.IsConstructor &&
!m.IsClassConstructor
let oldLoc = m.OlderVersion().NbLinesOfCode
where oldLoc > 15 && m.NbLinesOfCode > oldLoc
select new { m,
oldLoc,
newLoc = m.NbLinesOfCode,
}
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid adding methods to a type that already had many methods</Name>
// To visualize changes in code, right-click a matched type and select:
// - Compare older and newer versions of source file
// - Compare older and newer versions disassembled with Reflector
warnif count > 0
from t in JustMyCode.Types where
t.IsPresentInBothBuilds() &&
t.Methods.Count() > t.OlderVersion().Methods.Count() &&
t.OlderVersion().Methods.Count() > 10
let newMethods = t.Methods.Where(m => m.WasAdded())
let removedMethods = t.OlderVersion().Methods.Where(m => m.WasRemoved())
select new { t,
oldNbMethods = t.OlderVersion().NbMethods,
newNbMethods = t.NbMethods,
newMethods,
removedMethods }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[//<Name>Avoid transforming an immutable type into a mutable one</Name>
// Users of an immutable type often rely on the fact that the type is immutable.
// If an immutable type becomes mutable, there are chances that this will break its users.
warnif count > 0
from t in Application.Types where
t.IsPresentInBothBuilds() &&
t.OlderVersion().IsImmutable &&
!t.IsImmutable &&
// Don't take account of immutable types transformed into static types (not deemed as immtable)
!t.IsStatic
let culpritFields = t.Fields.Where(f => f.IsImmutable)
select new {t, culpritFields }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid transforming an immutable field into a mutable one</Name>
// Users of an immutable field often rely on the fact that the type is immutable.
// If an immutable field becomes mutable, there are chances that this will break its users.
warnif count > 0
from f in Application.Fields where
f.IsPresentInBothBuilds() &&
f.OlderVersion().IsImmutable &&
!f.IsImmutable
select f]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid adding instance fields to a type that already had many instance fields</Name>
// To visualize changes in code, right-click a matched type and select:
// - Compare older and newer versions of source file
// - Compare older and newer versions disassembled with Reflector
warnif count > 0
from t in JustMyCode.Types where
t.IsPresentInBothBuilds() &&
!t.IsStatic
let oldNbInstanceFields = t.OlderVersion().InstanceFields
let newNbInstanceFields = t.InstanceFields
where
newNbInstanceFields.Count() > oldNbInstanceFields .Count() &&
oldNbInstanceFields.Count() > 6
let newInstanceFields = t.InstanceFields.Where(f => f.WasAdded())
select new { t,
oldCount = oldNbInstanceFields.Count() ,
newCount = newNbInstanceFields.Count() ,
newInstanceFields }]]></Query>
</Group>
<Group Name="Object Oriented Design" Active="True" ShownInReport="True">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Base class should not use derivatives</Name>
warnif count > 0
from baseClass in JustMyCode.Types
where baseClass.IsClass && baseClass.NbChildren > 0 // <-- for optimization!
let derivedClassesUsed = baseClass.DerivedTypes.UsedBy(baseClass)
where derivedClassesUsed.Count() > 0
select new { baseClass, derivedClassesUsed }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Class shouldn't be too deep in inheritance tree</Name>
warnif count > 0 from t in JustMyCode.Types
where t.IsClass
let baseClasses = t.BaseClasses.ExceptThirdParty()
// Warn for classes with 3 or more base classes.
// Notice that we don't count third-party classes
// because this rule concerns your code design,
// not third-party libraries consumed design.
where baseClasses.Count() >= 3
select new { t, baseClasses,
// The metric value DepthOfInheritance takes account
// of third-party base classes
t.DepthOfInheritance }
// Branches too long in the derivation should be avoided.
// See the definition of the DepthOfInheritance metric here
// http://www.ndepend.com/Metrics.aspx#DIT
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Class with no descendant should be sealed if possible</Name>
warnif count > 0 from t in JustMyCode.Types where
t.IsClass &&
t.NbChildren ==0 &&
!t.IsSealed &&
!t.IsStatic
// && !t.IsPublic <-- You might want to add this condition
// if you are developing a framework
// with classes that are intended to be
// sub-classed by your clients.
orderby t.NbLinesOfCode descending
select new { t, t.NbLinesOfCode }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Overrides of Method() should call base.Method()</Name>
// Overrides of Method() should refine the behavior of base.Method().
// If base.Method() is not called, the base behavior is not refined but it is replaced.
// Violations of this rule are a sign of design flaw,
// especially if the design provides valid reasons
// that advocates that the base behavior must be replaced and not refined.
//
// Discussions on this topic are available here:
// http://stackoverflow.com/questions/1107022/should-i-call-the-base-class-implementation-when-overriding-a-method-in-c-sharp
// http://stackoverflow.com/questions/2945147/make-sure-base-method-gets-called-in-c-sharp
warnif count > 0
from t in Types // Take account of third-party types too
// Bother only classes with descendant
where t.IsClass && t.NbChildren > 0
from mBase in t.InstanceMethods
where mBase.IsVirtual &&
!mBase.IsThirdParty &&
!mBase.IsAbstract &&
!mBase.IsExplicitInterfaceImpl
from mOverride in mBase.OverridesDirectDerived
where !mOverride.IsUsing(mBase)
select new { mOverride, shouldCall = mBase, definedInBaseClass = mBase.ParentType }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Do not hide base class methods</Name>
// To fix a violation of this rule, remove or rename the method, or change the parameter signature
// so that the method does not hide the base method.
// More on hiding vs. virtual usefulness here:
// http://www.artima.com/intv/nonvirtual.html
// http://blogs.msdn.com/b/ericlippert/archive/2008/05/21/method-hiding-apologia.aspx
warnif count > 0
// Define a lookup table indexing methods by their name including parameters signature.
let lookup = Methods.Where(m => !m.IsConstructor && !m.IsStatic && !m.IsGeneratedByCompiler)
.ToLookup(m1 => m1.Name)
from t in Application.Types
where !t.IsStatic && t.IsClass &&
// Discard classes deriving directly from System.Object
t.DepthOfInheritance > 1
where t.BaseClasses.Any()
// For each methods not overriding any methods (new slot),
// let's check if it hides by name some methods defined in base classe.
from m in t.InstanceMethods
where m.IsNewSlot && !m.IsExplicitInterfaceImpl && !m.IsGeneratedByCompiler
// Notice how lookup is used to quickly retrieve methods with same name as m.
// This makes the query 10 times faster than iterating each base methods to check their name.
let baseMethodsHidden = lookup[m.Name].Where(m1 => m1 != m && t.DeriveFrom(m1.ParentType))
where baseMethodsHidden.Count() > 0
select new { m, baseMethodsHidden }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>A stateless class or structure might be turned into a static type</Name>
// This rule indicates stateless types that might
// eventually be turned into static classes.
warnif count > 0 from t in JustMyCode.Types where
!t.IsStatic &&
!t.IsGeneric &&
t.InstanceFields.Count() == 0 &&
// Don't match:
// --> types that implement some interfaces.
t.NbInterfacesImplemented == 0 &&
// --> or classes that have sub-classes children.
t.NbChildren == 0 &&
// --> or classes that have a base class
((t.IsClass && t.DepthOfDeriveFrom("System.Object".AllowNoMatch()) == 1) ||
t.IsStructure)
select t
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Non-static classes should be instantiated or turned to static</Name>
// Notice that classes only instantiated through reflection, like plug-in root classes
// are matched by this rules.
warnif count > 0
from t in JustMyCode.Types
where t.IsClass &&
//!t.IsPublic && // if you are developing a framework,
// you might not want to match public classes
!t.IsStatic &&
!t.IsAttributeClass && // Attributes class are never seen as instantiated
!t.DeriveFrom("System.MarshalByRefObject".AllowNoMatch()) // Types instantiated through remoting infrastructure
// find the first constructor of t called
let ctorCalled = t.Constructors.FirstOrDefault(ctor => ctor.NbMethodsCallingMe > 0)
// match t if none of its constructors is called.
where ctorCalled == null
select new { t, t.Visibility }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods should be declared static if possible</Name>
warnif count > 0
// When an instance method can be safely declared as static you should declare it as static.
// Since it doesn't use any instance data and method of its type and base-types,
// you should consider if such a method could be moved to a static utility class
// or if it is strongly related enough to its current declaring type to stay in it.
//
// Turning an instance method into a static method is a micro performance optimization
// since a static method is a bit cheaper to invoke than an instance method.
from t in JustMyCode.Types.Where(t =>
!t.IsStatic && !t.IsInterface &&
!t.IsEnumeration && !t.IsDelegate &&
!t.IsGeneratedByCompiler)
let methodsThatCanBeMadeStatic =
from m in t.InstanceMethods
// An instance method can be turned to static if it is not virtual,
// not using the this reference and also, not using
// any of its class or base classes instance fields or instance methods.
where !m.IsAbstract && !m.IsVirtual &&
!m.AccessThis && !m.IsExplicitInterfaceImpl &&
// Optimization: Using FirstOrDefault() avoid to check all members,
// as soon as one member is found
// we know the method m cannot be made static.
m.MembersUsed.FirstOrDefault(
mUsed => !mUsed.IsStatic &&
(mUsed.ParentType == t ||
t.DeriveFrom(mUsed.ParentType))
) == null
select m
from m in methodsThatCanBeMadeStatic
let staticFieldsUsed = m.ParentType.StaticFields.UsedBy(m).Where(f => !f.IsGeneratedByCompiler)
select new { m, staticFieldsUsed }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Constructor should not call a virtual methods</Name>
// Returns constructor of a non-sealed type calling virtual methods.
// In such a situation, if a derived class overrides the method,
// then the override method will be called before the derived constructor.
// This makes the class fragile to derive from.
//
// Violations reported can be solved by re-designing object initialisation
// or by marking the parent class as sealed, if possible.
warnif count > 0
from t in Application.Types where
t.IsClass &&
!t.IsGeneratedByCompiler &&
!t.IsSealed
from ctor in t.Constructors
let virtualMethodsCalled = from mCalled in ctor.MethodsCalled
where mCalled.IsVirtual &&
(mCalled.ParentType == t ||
t.DeriveFrom(mCalled.ParentType))
select mCalled
where virtualMethodsCalled.Count() > 0
select new { ctor ,
virtualMethodsCalled,
// If there is no derived type, it might be
// an opportunity to mark t as sealed.
t.DerivedTypes }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[//<Name>Avoid the Singleton pattern</Name>
warnif count > 0
from t in Application.Types
where !t.IsStatic && !t.IsAbstract && (t.IsClass || t.IsStructure)
// All ctors of a singleton are private
where t.Constructors.Where(ctor => !ctor.IsPrivate).Count() == 0
// A singleton contains one static field of its parent type, to reference the unique instance
let staticFieldInstances = t.StaticFields.WithFieldType(t)
where staticFieldInstances.Count() == 1
select new { t, staticFieldInstance = staticFieldInstances.First() }
// The Singleton pattern consists in syntactically enforcing that a class
// has just one unique instance.
// At first glance, this pattern looks appealing and it is widely used.
// However, we discourage you from using singleton classes because experience
// shows that singletons often result in less testable and less maintainable code.
// More details available in these discussions:
// http://codebetter.com/patricksmacchia/2011/05/04/back-to-basics-usage-of-static-members/
// http://adamschepis.com/blog/2011/05/02/im-adam-and-im-a-recovering-singleton-addict/
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Don't assign static fields from instance methods</Name>
// Assigning static fields from instance methods leads to
// poorly maintainable and non thread-safe code.
// It is advised to assign static fields inline or from class constructor.
warnif count > 0
from f in Application.Fields where
f.IsStatic &&
!f.IsLiteral &&
!f.IsInitOnly &&
!f.IsGeneratedByCompiler &&
// Contract API define such a insideContractEvaluation static field
f.Name != "insideContractEvaluation"
let assignedBy = f.MethodsAssigningMe.Where(m => !m.IsStatic)
where assignedBy .Count() > 0
select new { f, assignedBy }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid empty interfaces</Name>
warnif count > 0 from t in JustMyCode.Types where
t.IsInterface &&
t.NbMethods == 0
select new { t, t.TypesThatImplementMe }
// Interfaces define members that provide a behavior
// or usage contract. The functionality described by
// the interface can be adopted by any type,
// regardless of where the type appears in the
// inheritance hierarchy. A type implements an
// interface by providing implementations for the
// interface's members. An empty interface does not
// define any members, and as such, does not define
// a contract that can be implemented.
// If your design includes empty interfaces that
// types are expected to implement, you are probably
// using an interface as a marker, or a way of
// identifying a group of types. If this identification
// will occur at runtime, the correct way to accomplish
// this is to use a custom attribute. Use the presence
// or absence of the attribute, or the attribute's
// properties, to identify the target types. If the
// identification must occurs at compile time, then using
// an empty interface is acceptable.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid types initialization cycles</Name>
warnif count > 0
// The class constructor (also called static constructor, and named cctor in IL code)
// of a type, if any, is executed by the CLR at runtime, the first time the type is used.
// A cctor doesn't need to be explicitely declared in C# or VB.NET, to exist in compiled IL code.
// Having a static field inline initialization is enought to have
// the cctor implicitely declared in the parent class or structure.
//
// If the cctor of a type t1 is using the type t2 and if the cctor of t2 is using t1,
// some type initialization unexpected and hard-to-diagnose buggy behavior can occur.
// Such a cyclic chain of initialization is not necessarily limited to two types
// and can embrace N types in the general case.
// More information on types initialization cycles can be found here:
// http://msmvps.com/blogs/jon_skeet/archive/2012/04/07/1808561.aspx
// The present code rule enumerates types initialization cycles.
// Some false positives can appear if some lambda expressions are defined
// in cctors or in methods called by cctors. In such situation, this rule
// considers these lambda expressions as executed at type initialization time,
// while it is not necessarily the case.
// Types initialization cycle can only happen between types of an assembly.
from assembly in Application.Assemblies
let cctorSuspects = assembly.ChildMethods.Where(
m => m.IsClassConstructor &&
// Optimization: types involved in a type cycle necessarily don't have type level.
m.ParentType.Level == null)
where cctorSuspects.Count() > 1
let typesSuspects = cctorSuspects.ParentTypes().ToHashSet()
//
// dicoTmp associates to each type suspect T, a set of types from typesSuspects
// that contains at least a method or a field used directly or indirectly by the cctor of T.
//
let dicoTmp = cctorSuspects.ToDictionary(
cctor => cctor.ParentType,
cctor => ((IMember)cctor).ToEnumerable().FillIterative(
members => from m in members
from mUsed in (m is IMethod) ? (m as IMethod).MembersUsed : new IMember[0]
where mUsed.ParentAssembly == assembly
select mUsed)
.DefinitionDomain
.Select(m => m.ParentType) // Don't need .Distinct() here, because of ToHashSet() below.
.Except(cctor.ParentType)
.Intersect(typesSuspects)
.ToHashSet()
)
//
// dico associates to each type suspect T, the set of types initialized (directly or indirectly)
// by the initialization of T. This second step is needed, because if a cctor of a type T1
// calls a member of a type T2, not only the cctor of T1 triggers the initialization of T2,
// but also it triggers the initialization of all types that are initialized by T2 initialization.
//
let dico = typesSuspects.Where(t => dicoTmp[t].Count() > 0).ToDictionary(
typeSuspect => typeSuspect,
typeSuspect => typeSuspect.ToEnumerable().FillIterative(
types => from t in types
from tUsed in dicoTmp[t]
select tUsed)
.DefinitionDomain
.Except(typeSuspect)
.ToHashSet()
)
//
// Now that dico is prepared, detect the cctor cycles
//
from t in dico.Keys
// Thanks to the work done to build dico, it is now pretty easy
// to spot types involved in an initialization cyle with t!
let usersAndUseds = from tTmp in dico[t]
where dico.ContainsKey(tTmp) && dico[tTmp].Contains(t)
select tTmp
where usersAndUseds.Count() > 0
// Here we've found type(s) both using and used by the suspect type.
// A cycle involving the type t is found!
let typeInitCycle = usersAndUseds.Append(t)
// Compute methodsCalled and fieldsUsed, useful to explore
// how a cctor involved in a type initialization cycle, triggers other type initialization.
let methodsCalledDepth = assembly.ChildMethods.DepthOfIsUsedBy(t.ClassConstructor)
let fieldsUsedDepth = assembly.ChildFields.DepthOfIsUsedBy(t.ClassConstructor)
let methodsCalled = methodsCalledDepth.DefinitionDomain.OrderBy(m => methodsCalledDepth[m]).ToArray()
let fieldsUsed = fieldsUsedDepth.DefinitionDomain.OrderBy(f => fieldsUsedDepth[f]).ToArray()
// Use the tick box to: Group cctors methods By parent types
select new { t.ClassConstructor,
cctorsCycle= typeInitCycle.Select(tTmp => tTmp.ClassConstructor),
// methodsCalled and fieldsUsed are members used directly and indirectly by the cctor.
// Export these members to the dependency graph (right click the cell Export/Append ... to the Graph)
// and see how the cctor trigger the initialization of other types
methodsCalled,
fieldsUsed
}]]></Query>
</Group>
<Group Name="Design" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid custom delegates</Name>
// Prefer using one of the standard generic delegate type in
// Predicate<T> Func<T0,T1,..,TResult> Action<T0,T1,..>
// instead of creating your own delegate type.
// Not only the code using these custom delegates will become clearer,
// but you'll be relieved from the maintenance of these delegate types.
//
// Notice that delegate that are consumed by DllImport extern methods
// must not be converted, else this could provoke marshalling issues.
warnif count > 0
from t in Application.Types where t.IsDelegate
let invokeMethod = (from m in t.Methods where m.SimpleName == "Invoke" select m).Single()
let signature1 = invokeMethod.Name.Substring(invokeMethod.SimpleName.Length, invokeMethod.Name.Length - invokeMethod.SimpleName.Length)
// 'ref' and 'out' parameters canot be supported
where !signature1.Contains("&")
let signature2 = signature1.Replace("(","<").Replace(")",">")
let signature3 = signature2 == "<>" ? "" : signature2
let resultTypeName = invokeMethod.ReturnType == null ? "????" :
invokeMethod.ReturnType.FullName == "System.Void" ? "" :
invokeMethod.ReturnType.Name
let replaceWith = resultTypeName == "Boolean" ?
"Predicate" + signature3 : resultTypeName == "" ?
"Action" + signature3 :
"Func" + signature3.Replace(">", "," + resultTypeName + ">")
select new { t, replaceWith }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types with disposable instance fields must be disposable</Name>
warnif count > 0
let iDisposable = ThirdParty.Types.WithFullName("System.IDisposable").FirstOrDefault()
where iDisposable != null // iDisposable can be null if the code base doesn't use at all System.IDisposable
from t in Application.Types where
!t.Implement(iDisposable) &&
!t.IsGeneratedByCompiler
let instanceFieldsDisposable =
t.InstanceFields.Where(f => f.FieldType != null &&
f.FieldType.Implement(iDisposable))
where instanceFieldsDisposable.Count() > 0
select new { t, instanceFieldsDisposable }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Disposable types with unmanaged resources should declare finalizer</Name>
// warnif count > 0
let iDisposable = ThirdParty.Types.WithFullName("System.IDisposable").SingleOrDefault()
where iDisposable != null // iDisposable can be null if the code base doesn't use at all System.IDisposable
let disposableTypes = Application.Types.ThatImplement(iDisposable)
let unmanagedResourcesFields = disposableTypes.ChildFields().Where(f =>
!f.IsStatic &&
f.FieldType != null &&
f.FieldType.FullName.EqualsAny("System.IntPtr","System.UIntPtr","System.Runtime.InteropServices.HandleRef")).ToHashSet()
let disposableTypesWithUnmanagedResource = unmanagedResourcesFields.ParentTypes()
from t in disposableTypesWithUnmanagedResource
where !t.HasFinalizer
let unmanagedResourcesTypeFields = unmanagedResourcesFields.Intersect(t.InstanceFields)
select new { t, unmanagedResourcesTypeFields }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Classes that are candidate to be turned into structures</Name>
//
// CAUTION: Before applying this rule, make sure to understand
// the implication of transforming a class into a structure.
// http://msdn.microsoft.com/en-us/library/aa664471(v=vs.71).aspx
//
// Int32, Double or Boolean are structures and not classes.
// Structure are particularly suited to implement lightweight values.
// Hence a class is candidate to be turned into a structure
// when its instances are lightweight values.
//
warnif count > 0 from t in JustMyCode.Types where
t.IsClass &&
!t.IsGeneratedByCompiler &&
!t.IsStatic &&
t.SizeOfInst > 0 &&
t.SizeOfInst <= 16 && // Structure instance must not be too big,
// else it degrades performance.
t.NbChildren == 0 && // Must not have children
// Must not implement interfaces to avoid boxing mismatch
// when structures implements interfaces.
t.InterfacesImplemented.Count() == 0 &&
// Must have no base class
t.DepthOfDeriveFrom("System.Object".AllowNoMatch()) == 1
select new { t, t.SizeOfInst, t.InstanceFields } // Must derive directly from System.Object
// && t.IsSealed <-- You might want to add this condition
// to restraint the set.
// && t.IsImmutable <-- Structures should be immutable type.
// && t.!IsPublic <-- You might want to add this condition if
// you are developping a framework with classes
// that are intended to be sub-classed by
// your clients.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid namespaces with few types</Name>
warnif count > 0 from n in JustMyCode.Namespaces
let types = n.ChildTypes.Where(t => !t.IsGeneratedByCompiler)
where
types.Count() < 5
orderby types.Count() ascending
select new { n, types }
// Make sure that there is a logical organization
// to each of your namespaces, and that there is a
// valid reason for putting types in a sparsely
// populated namespace. Namespaces should contain
// types that are used together in most scenarios.
// When their applications are mutually exclusive,
// types should be located in separate namespaces]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Nested types should not be visible</Name>
warnif count > 0 from t in JustMyCode.Types where
t.IsNested &&
!t.IsGeneratedByCompiler &&
!t.IsPrivate
select new { t, t.NbLinesOfCode, t.Visibility }
// A nested type is a type declared within the
// scope of another type. Nested types are useful
// for encapsulating private implementation details
// of the containing type. Used for this purpose,
// nested types should not be externally visible.
// Do not use externally visible nested types for
// logical grouping or to avoid name collisions;
// instead, use namespaces.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Declare types in namespaces</Name>
warnif count > 0 from n in Application.Namespaces where
n.Name == ""
select new { n, n.ChildTypes, n.NbLinesOfCode }
// Types are declared within namespaces to
// prevent name collisions, and as a way of
// organizing related types in an object hierarchy.
// Types outside any named namespace are in a
// global namespace that cannot be referenced
// in code. If an anonymous namespace can be found,
// it means that it contains types outside of namespaces.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Empty static constructor can be discarded</Name>
warnif count > 0 from m in Application.Methods where
m.IsClassConstructor &&
m.NbLinesOfCode == 0
select m
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Instances size shouldn't be too big</Name>
warnif count > 0 from t in JustMyCode.Types where
t.SizeOfInst > 64
orderby t.SizeOfInst descending
select new { t, t.SizeOfInst, t.InstanceFields }
// Types where SizeOfInst > 64 might degrade performance
// (depending on the number of instances created at runtime)
// and might be hard to maintain. However it is not a rule
// since sometime there is no alternative (the size of
// instances of the System.Net.NetworkInformation.SystemIcmpV6Statistics
// standard class is 2064 bytes).
// Notice that a class with a large SizeOfInst value
// doesn't necessarily have a lot of instance fields.
// It might derive from a class with a large SizeOfInst value.
// See the definition of the SizeOfInst metric here
// http://www.ndepend.com/Metrics.aspx#SizeOfInst]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Boxing/unboxing should be avoided</Name>
warnif percentage > 5 from m in Application.Methods where
m.IsUsingBoxing ||
m.IsUsingUnboxing
select new { m, m.NbLinesOfCode, m.IsUsingBoxing, m.IsUsingUnboxing }
// Thanks to generics, boxing and unboxing should be rare.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Attribute classes should be sealed</Name>
warnif count > 0 from t in Application.Types where
t.IsAttributeClass &&
!t.IsSealed &&
!t.IsAbstract &&
t.IsPublic
select new { t, t.NbLinesOfCode }
// The .NET Framework class library provides methods
// for retrieving custom attributes. By default,
// these methods search the attribute inheritance
// hierarchy; for example System.Attribute.GetCustomAttribute
// searches for the specified attribute type, or any
// attribute type that extends the specified attribute
// type. Sealing the attribute eliminates the search
// through the inheritance hierarchy, and can improve
// performance.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Don't use obsolete types, methods or fields</Name>
warnif count > 0
let obsoleteTypes = Types.Where(t => t.IsObsolete)
let obsoleteMethods = Methods.Where(m => m.IsObsolete).ToHashSet()
let obsoleteFields = Fields.Where(f => f.IsObsolete)
from m in JustMyCode.Methods.UsingAny(obsoleteTypes).Union(
JustMyCode.Methods.UsingAny(obsoleteMethods)).Union(
JustMyCode.Methods.UsingAny(obsoleteFields))
let obsoleteTypesUsed = obsoleteTypes.UsedBy(m)
// Optimization: MethodsCalled + Intersect() is faster than using obsoleteMethods.UsedBy()
let obsoleteMethodsUsed = m.MethodsCalled.Intersect(obsoleteMethods)
let obsoleteFieldsUsed = obsoleteFields.UsedBy(m)
select new { m, obsoleteTypesUsed, obsoleteMethodsUsed, obsoleteFieldsUsed }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Don't forget to implement methods that throw NotImplementedException</Name>
warnif count > 0
from m in Application.Methods
where m.CreateA("System.NotImplementedException".AllowNoMatch())
select m]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Equals() should be overridden by types implementing the '==' operator</Name>
warnif count > 0
from m in Application.Methods where
m.IsOperator &&
m.SimpleName == "op_Equality"
let equalsMethod = m.ParentType.InstanceMethods.Where(m0 => m0.Name == "Equals(Object)").SingleOrDefault()
where equalsMethod == null
select m
]]></Query>
</Group>
<Group Name="Architecture and Layering" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Avoid namespaces mutually dependent</Name>
warnif count > 0
// Foreach pair of namespace mutually dependent, this rule lists pairs.
// The pair { first, second } is formatted to show first namespace shouldn't use the second namespace.
// The first/second order is inferred from the number of types used by each other.
// The first namespace is using fewer types of the second.
// It means the first namespace is certainly at a lower level in the architecture than the second.
//
// To explore the coupling between two namespaces mutually dependent:
// 1) export the first namespace to the vertical header of the dependency matrix
// 2) export the second namespace to the horizontal header of the dependency matrix
// 3) double-click the black cell
// 4) in the matrix command bar, click the button: Remove empty Row(s) en Column(s)
// At this point, the dependency matrix shows types involved into the coupling.
//
// Following this rule is useful to avoid namespaces dependency cycles.
// More on this in our white books relative to partitioning code.
// http://www.ndepend.com/WhiteBooks.aspx
// Optimization: restraint application assemblies set
// If some namespaces are mutually dependent
// - They must be declared in the same assembly
// - The parent assembly must ContainsNamespaceDependencyCycle
from assembly in Application.Assemblies.Where(a => a.ContainsNamespaceDependencyCycle != null && a.ContainsNamespaceDependencyCycle.Value)
// hashset is used to avoid reporting both A <-> B and B <-> A
let hashset = new HashSet<INamespace>()
// Optimization: restraint namespaces set
// If a namespace doesn't have a Level value, it must be in a dependency cycle
// or it must be using directly or indirectly a dependency cycle.
let namespacesSuspect = assembly.ChildNamespaces.Where(n => n.Level == null)
from nA in namespacesSuspect
// Select namespaces mutually dependent with nA
let unused = hashset.Add(nA) // Populate hashset
let namespacesMutuallyDependentWith_nA = nA.NamespacesUsed.Using(nA)
.Except(hashset) // <-- avoid reporting both A <-> B and B <-> A
where namespacesMutuallyDependentWith_nA.Count() > 0
from nB in namespacesMutuallyDependentWith_nA
// nA and nB are mutually dependent
// First select the one that shouldn't use the other.
// The first namespace is inferred from the fact that it is using less types of the second.
let typesOfBUsedByA = nB.ChildTypes.UsedBy(nA)
let typesOfAUsedByB = nA.ChildTypes.UsedBy(nB)
let first = (typesOfBUsedByA.Count() > typesOfAUsedByB.Count()) ? nB : nA
let second = (first == nA) ? nB : nA
let typesOfFirstUsedBySecond = (first == nA) ? typesOfAUsedByB : typesOfBUsedByA
let typesOfSecondUsedByFirst = (first == nA) ? typesOfBUsedByA : typesOfAUsedByB
select new { first, shouldntUse = second, typesOfFirstUsedBySecond, typesOfSecondUsedByFirst }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid namespaces dependency cycles</Name>
warnif count > 0
// This query lists all application namespace dependency cycles.
// Each row shows a different cycle, prefixed with a namespace entangled in the cycle.
//
// To browse a cycle on the dependency graph or the dependency matrix, right click
// a cycle cell and export the matched namespaces to the dependency graph or matrix!
//
// In the matrix, dependency cycles are represented with red squares and black cells.
// To easily browse dependency cycles, the Matrix comes with an option:
// --> Display Direct and Indirect Dependencies
//
// Read our white books relative to partitioning code,
// to know more about namespaces dependency cycles, and why avoiding them
// is a simple but efficient solution to architecture for your code base.
// http://www.ndepend.com/WhiteBooks.aspx
// Optimization: restraint application assemblies set
// If some namespaces are mutually dependent
// - They must be declared in the same assembly
// - The parent assembly must ContainsNamespaceDependencyCycle
from assembly in Application.Assemblies
.Where(a => a.ContainsNamespaceDependencyCycle != null &&
a.ContainsNamespaceDependencyCycle.Value)
// Optimization: restraint namespaces set
// A namespace involved in a cycle necessarily have a null Level.
let namespacesSuspect = assembly.ChildNamespaces.Where(n => n.Level == null)
// hashset is used to avoid iterating again on namespaces already caught in a cycle.
let hashset = new HashSet<INamespace>()
from suspect in namespacesSuspect
// By commenting in this line, the query matches all namespaces involved in a cycle.
where !hashset.Contains(suspect)
// Define 2 code metrics
// - Namespaces depth of is using indirectly the suspect namespace.
// - Namespaces depth of is used by the suspect namespace indirectly.
// Note: for direct usage the depth is equal to 1.
let namespacesUserDepth = namespacesSuspect.DepthOfIsUsing(suspect)
let namespacesUsedDepth = namespacesSuspect.DepthOfIsUsedBy(suspect)
// Select namespaces that are both using and used by namespaceSuspect
let usersAndUsed = from n in namespacesSuspect where
namespacesUserDepth[n] > 0 &&
namespacesUsedDepth[n] > 0
select n
where usersAndUsed.Count() > 0
// Here we've found namespace(s) both using and used by the suspect namespace.
// A cycle involving the suspect namespace is found!
let cycle = usersAndUsed.Append(suspect)
// Fill hashset with namespaces in the cycle.
// .ToArray() is needed to force the iterating process.
let unused1 = (from n in cycle let unused2 = hashset.Add(n) select n).ToArray()
select new { suspect, cycle }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid partitioning the code base through many small library Assemblies</Name>
warnif count > 10
from a in Application.Assemblies where
( a.NbLinesOfCode < 1000 ||
a.NbILInstructions < 7000 ) &&
a.FilePath.FileExtension.ToLower() == ".dll"
select new { a, a.NbLinesOfCode, a.NbILInstructions }
// Each .NET Assembly represents one or several physical file.
// Having too many library .NET Assemblies is a symptom of
// considering physical .NET Assemblies as logical components.
// We advise having less, and bigger, .NET Assemblies
// and using the concept of namespaces to define logical components.
// Benefits are:
// - Much faster compilation time
// (compilation time divided by 10 wouldn't be surprising)
// - Faster startup time for your program
// - Easier deploiement thanks to less files to manage.
// - If you are developing a Framework,
// less .NET assemblies to reference and manage for your users
//
// More on this in our white books relative to partitioning code.
// http://www.ndepend.com/WhiteBooks.aspx ]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>UI layer shouldn't use directly DB types</Name>
warnif count > 0
// UI layer is made of types in namespaces using a UI framework
let uiTypes = Application.Namespaces.UsingAny(Assemblies.WithNameIn("PresentationFramework", "System.Windows", "System.Windows.Forms", "System.Web")).ChildTypes()
// You can easily customize this line to define what are DB types.
let dbTypes = ThirdParty.Assemblies.WithNameIn("System.Data", "EntityFramework", "NHibernate").ChildTypes()
// Ideally even DataSet and associated, usage should be forbidden from UI layer:
// http://stackoverflow.com/questions/1708690/is-list-better-than-dataset-for-ui-layer-in-asp-net
.Except(ThirdParty.Types.WithNameIn("DataSet", "DataTable", "DataRow"))
from uiType in uiTypes.UsingAny(dbTypes)
let dbTypesUsed = dbTypes.Intersect(uiType.TypesUsed)
select new { uiType, dbTypesUsed }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>UI layer shouldn't use directly DAL layer</Name>
warnif count > 0
// UI layer is made of types in namespaces using a UI framework
let uiTypes = Application.Namespaces.UsingAny(Assemblies.WithNameIn("PresentationFramework", "System.Windows", "System.Windows.Forms", "System.Web")).ChildTypes()
// Exclude commonly used DataSet and associated, from ADO.Net types
// You can easily customize this line to define what are DB types.
let dbTypes = ThirdParty.Assemblies.WithNameIn("System.Data", "EntityFramework", "NHibernate").ChildTypes()
.Except(ThirdParty.Types.WithNameIn("DataSet", "DataTable", "DataRow"))
// DAL layer is made of types in namespaces using a DB framework
// .ToHashSet() results to faster execution of dalTypes.Intersect(uiType.TypesIUse).
let dalTypes = Application.Namespaces.UsingAny(dbTypes).ChildTypes().ToHashSet()
from uiType in uiTypes.UsingAny(dalTypes)
let dalTypesUsed = dalTypes.Intersect(uiType.TypesUsed)
select new {
uiType,
// if dalTypesUsed is empty, it means that the uiType is part of the DAL
dalTypesUsed
}]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Assemblies with poor cohesion (RelationalCohesion)</Name>
warnif count > 0 from a in Application.Assemblies where
a.NbTypes > 20 && // Relational Cohesion metrics is relevant only if there are several types
(a.RelationalCohesion < 1.5 ||
a.RelationalCohesion > 4.0)
select new { a, a.NbTypes, a.RelationalCohesion }
// As classes inside an assembly should be strongly related,
// the cohesion should be high. On the other hand, a value
// which is too high may indicate over-coupling. A good range
// for RelationalCohesion is 1.5 to 4.0.
// See the definition of the RelationalCohesion metric here
// http://www.ndepend.com/Metrics.aspx#RelationalCohesion]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Assemblies that don't satisfy the Abstractness/Instability principle</Name>
warnif percentage > 15 from a in Application.Assemblies where
a.NormDistFromMainSeq > 0.7
orderby a.NormDistFromMainSeq descending
select new { a, a.NormDistFromMainSeq }
// See the definition of the NormDistFromMainSeq metric here
// http://www.ndepend.com/Metrics.aspx#DitFromMainSeq]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Example of custom rule to check for dependency</Name>
// To define a rule that warns if a particular dependency exist or not,
// from a code element A to a code element B
// A and B being an Assembly Namespace Type Method or Field,
// A and B not necessarily two Assemblies or two Namespaces...
// you can first, right click the cell in the Dependency Matrix
// with B in row and A in column,
// or right-click the concerned arrow in the Dependency Graph
// from A to B, and choose to:
// "Generate a code rule that warns if this dependency exists"
//
// The generated rule will look like the one below.
// It is now up to you to adapt this rule to check your needs.
warnif count > 0 from a in Assemblies
where
a.IsUsing("Foo1.Foo2".AllowNoMatch().MatchNamespace()) &&
(a.Name == @"Foo3")
select new { a, a.NbLinesOfCode }
// the assembly Foo3
// shouldn't use directly
// the namespace Foo3.Foo4
// because (TODO insert your reason)
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Higher cohesion - lower coupling</Name>
// It is deemed as a good software architecture practice to clearly separate
// 'abstract' namespaces containing only abstractions (interfaces, enumerations, delegates)
// from other 'concrete' namespaces, that contains classes and structures.
//
// Typically, the more concrete namespaces rely on abstract namespaces *only*,
// the more Decoupled is the architecture, and the more Cohesive are
// classes inside concrete namespaces.
//
// The following code query, define sets of abstract and concrete namespaces
// and shows for each concrete namespaces, which concrete and abstract namespaces are used.
//
// This query can be adapted to a rule, depending on how much you want
// your code architecture being decoupled.
//
let abstractNamespaces = JustMyCode.Namespaces.Where(
n => n.ChildTypes.Where(t => !t.IsInterface && !t.IsEnumeration && !t.IsDelegate).Count() == 0
).ToHashSet()
let concreteNamespaces = JustMyCode.Namespaces.Except(abstractNamespaces).ToHashSet()
from n in concreteNamespaces
let namespacesUsed = n.NamespacesUsed.ExceptThirdParty()
let concreteNamespacesUsed = namespacesUsed.Except(abstractNamespaces)
let abstractNamespacesUsed = namespacesUsed.Except(concreteNamespaces)
select new { n, concreteNamespacesUsed , abstractNamespacesUsed }]]></Query>
</Group>
<Group Name="API Breaking Changes" Active="True" ShownInReport="True">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>API Breaking Changes: Types</Name>
// This rule warns if a publicly visible type is
// not publicly visible anymore or if it has been removed.
// Such type can break the code of your clients.
warnif count > 0 from t in codeBase.OlderVersion().Application.Types
where t.IsPubliclyVisible &&
// The type has been removed and its parent assembly hasn't been removed ...
( (t.WasRemoved() && !t.ParentAssembly.WasRemoved()) ||
// ... or the type is not publicly visible anymore
!t.WasRemoved() && !t.NewerVersion().IsPubliclyVisible)
select new { t,
NewVisibility = (t.WasRemoved() ? " " : t.NewerVersion().Visibility.ToString()) }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>API Breaking Changes: Methods</Name>
// This rule warns if a publicly visible method is
// not publicly visible anymore or if it has been removed.
// Such method can break the code of your clients.
warnif count > 0 from m in codeBase.OlderVersion().Application.Methods
where m.IsPubliclyVisible &&
// The method has been removed and its parent type hasn't been removed ...
( (m.WasRemoved() && !m.ParentType.WasRemoved()) ||
// ... or the method is not publicly visible anymore
!m.WasRemoved() && !m.NewerVersion().IsPubliclyVisible)
select new { m,
NewVisibility = (m.WasRemoved() ? " " : m.NewerVersion().Visibility.ToString()) }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>API Breaking Changes: Fields</Name>
// This rule warns if a publicly visible field is
// not publicly visible anymore or if it has been removed.
// Such field can break the code of your clients.
warnif count > 0 from f in codeBase.OlderVersion().Application.Fields
where f.IsPubliclyVisible &&
// The field has been removed and its parent type hasn't been removed ...
( (f.WasRemoved() && !f.ParentType.WasRemoved()) ||
// ... or the field is not publicly visible anymore
!f.WasRemoved() && !f.NewerVersion().IsPubliclyVisible)
select new { f,
NewVisibility = (f.WasRemoved() ? " " : f.NewerVersion().Visibility.ToString()) }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>API Breaking Changes: Interfaces and Abstract Classes</Name>
// This rule warns if a publicly visible interface or abstract class
// has been changed and contains new abstract methods or
// if some abstract methods have been removed.
// This can break the code of clients
// that implement such interface or derive from such abstract class.
warnif count > 0 from tNewer in Application.Types where
(tNewer.IsInterface || tNewer.IsClass && tNewer.IsAbstract) &&
tNewer.IsPubliclyVisible &&
tNewer.IsPresentInBothBuilds()
let tOlder = tNewer.OlderVersion() where tOlder.IsPubliclyVisible
let methodsRemoved = tOlder.Methods.Where(m => m.IsAbstract && m.WasRemoved())
let methodsAdded = tNewer.Methods.Where(m => m.IsAbstract && m.WasAdded())
where methodsAdded.Count() > 0 || methodsRemoved.Count() > 0
select new { tNewer, methodsAdded, methodsRemoved }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Broken serializable types</Name>
// Find breaking changes in types marked with SerializableAttribute.
warnif count > 0
from t in Application.Types where
// Collect types tagged with SerializableAttribute
t.HasAttribute("System.SerializableAttribute".AllowNoMatch()) &&
!t.IsDelegate &&
t.IsPresentInBothBuilds() &&
t.HasAttribute(t)
// Find newer and older versions of NonSerializedAttribute
let newNonSerializedAttribute = ThirdParty.Types.WithFullName("System.NonSerializedAttribute").SingleOrDefault()
let oldNonSerializedAttribute = newNonSerializedAttribute == null ? null : newNonSerializedAttribute.OlderVersion()
// Find added or removed fields not marked with NonSerializedAttribute
let addedInstanceField = from f in t.InstanceFields where
f.WasAdded() &&
(newNonSerializedAttribute == null || !f.HasAttribute(newNonSerializedAttribute))
select f
let removedInstanceField = from f in t.OlderVersion().InstanceFields where
f.WasRemoved() &&
(oldNonSerializedAttribute == null || !f.HasAttribute(oldNonSerializedAttribute))
select f
where addedInstanceField.Count() > 0 || removedInstanceField.Count() > 0
select new { t, addedInstanceField, removedInstanceField }
// From http://msdn.microsoft.com/library/system.serializableattribute.aspx :
// All the public and private fields in a type that are marked by the
// SerializableAttribute are serialized by default, unless the type
// implements the ISerializable interface to override the serialization process.
// The default serialization process excludes fields that are marked
// with the NonSerializedAttribute attribute.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Avoid transforming immutable types into mutable types</Name>
// Immutability is a strong property on a type.
// Breaking immutability can result in serious problem for an algorithm consummer
// that has been written taking account of the type immutability.
// To visualize changes in code, right-click a matched type and select:
// - Compare older and newer versions of source file
// - Compare older and newer versions disassembled with Reflector
warnif count > 0
from t in Application.Types where
t.IsPresentInBothBuilds() &&
!t.IsStatic &&
!t.IsImmutable &&
t.OlderVersion().IsImmutable
let mutableFields = from f in t.InstanceFields where !f.IsImmutable select f
select new { t, mutableFields }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Avoid changing enumerations Flags status</Name>
// Being tagged with the Flags attribute is a strong property for an enumeration.
// Changing the Flags status of an enumeration has significant impact for its client.
warnif count > 0
let oldFlags = codeBase.OlderVersion().ThirdParty.Types.WithFullName("System.FlagsAttribute").SingleOrDefault()
let newFlags = ThirdParty.Types.WithFullName("System.FlagsAttribute").SingleOrDefault()
where oldFlags != null && newFlags != null
from t in Application.Types where
t.IsEnumeration &&
t.IsPresentInBothBuilds()
let isFlags = t.HasAttribute(newFlags)
let wasFlags = t.OlderVersion().HasAttribute(oldFlags)
where isFlags != wasFlags
select new { t, isFlags, wasFlags }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>API: New publicly visible types</Name>
// List types that are new in the public surface of your assemblies
from t in Application.Types
where t.IsPubliclyVisible &&
// The type has been removed and its parent assembly hasn't been removed ...
( (t.WasAdded() && !t.ParentAssembly.WasAdded()) ||
// ... or the type existed but was not publicly visible
!t.WasAdded() && !t.OlderVersion().IsPubliclyVisible)
select new { t,
OldVisibility = (t.WasAdded() ? " " : t.OlderVersion().Visibility.ToString()) }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>API: New publicly visible methods</Name>
// List methods that are new in the public surface of your assemblies
from m in Application.Methods
where m.IsPubliclyVisible &&
// The method has been removed and its parent assembly hasn'm been removed ...
( (m.WasAdded() && !m.ParentType.WasAdded()) ||
// ... or the t existed but was not publicly visible
!m.WasAdded() && !m.OlderVersion().IsPubliclyVisible)
select new { m,
OldVisibility = (m.WasAdded() ? " " : m.OlderVersion().Visibility.ToString()) }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>API: New publicly visible fields</Name>
// List fields that are new in the public surface of your assemblies
from f in Application.Fields
where f.IsPubliclyVisible &&
// The method has been removed and its parent assembly hasn'f been removed ...
( (f.WasAdded() && !f.ParentType.WasAdded()) ||
// ... or the t existed but was not publicly visible
!f.WasAdded() && !f.OlderVersion().IsPubliclyVisible)
select new { f,
OldVisibility = (f.WasAdded() ? " " : f.OlderVersion().Visibility.ToString()) }]]></Query>
</Group>
<Group Name="Code Diff Summary" Active="True" ShownInReport="True">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>New assemblies</Name>
from a in Application.Assemblies where a.WasAdded()
select new { a, a.NbLinesOfCode }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Assemblies removed</Name>
from a in codeBase.OlderVersion().Application.Assemblies where a.WasRemoved()
select new { a, a.NbLinesOfCode }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Assemblies where code was changed</Name>
from a in Application.Assemblies where a.CodeWasChanged()
select new { a, a.NbLinesOfCode,
oldNbLinesOfCode = a.OlderVersion().NbLinesOfCode.GetValueOrDefault() ,
delta = (int) a.NbLinesOfCode.GetValueOrDefault() - a.OlderVersion().NbLinesOfCode.GetValueOrDefault() }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>New namespaces</Name>
from n in Application.Namespaces where
!n.ParentAssembly.WasAdded() &&
n.WasAdded()
select new { n, n.NbLinesOfCode }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Namespaces removed</Name>
from n in codeBase.OlderVersion().Application.Namespaces where
!n.ParentAssembly.WasRemoved() &&
n.WasRemoved()
select new { n, n.NbLinesOfCode }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Namespaces where code was changed</Name>
from n in Application.Namespaces where n.CodeWasChanged()
select new { n, n.NbLinesOfCode,
oldNbLinesOfCode = n.OlderVersion().NbLinesOfCode.GetValueOrDefault() ,
delta = (int) n.NbLinesOfCode.GetValueOrDefault() - n.OlderVersion().NbLinesOfCode.GetValueOrDefault() }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>New types</Name>
from t in Application.Types where
!t.ParentNamespace.WasAdded() &&
t.WasAdded()
select new { t, t.NbLinesOfCode }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types removed</Name>
from t in codeBase.OlderVersion().Application.Types where
!t.ParentNamespace.WasRemoved() &&
t.WasRemoved()
select new { t, t.NbLinesOfCode }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types where code was changed</Name>
// To visualize changes in code, right-click a matched type and select:
// - Compare older and newer versions of source file
// - Compare older and newer versions disassembled with Reflector
from t in Application.Types where t.CodeWasChanged()
//select new { t, t.NbLinesOfCode }
select new { t, t.NbLinesOfCode,
oldNbLinesOfCode = t.OlderVersion().NbLinesOfCode ,
delta = (int?) t.NbLinesOfCode - t.OlderVersion().NbLinesOfCode }
/*from t in Application.Types where t.CodeWasChanged() && t.IsPresentInBothBuild
select new { t, t.NbLinesOfCode,
oldNbLinesOfCode = t.OlderVersion().NbLinesOfCode ,
delta = (int) t.NbLinesOfCode - t.OlderVersion().NbLinesOfCode }*/]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Heuristic to find types moved from one namespace or assembly to another</Name>
let typesRemoved = codeBase.OlderVersion().Types.Where(t => t.WasRemoved())
let typesAdded = Types.Where(t => t.WasAdded())
from tMoved in typesAdded.Join(
typesRemoved,
t => t.Name,
t => t.Name,
(tNewer, tOlder) => new { tNewer,
OlderParentNamespace = tOlder.ParentNamespace,
OlderParentAssembly = tOlder.ParentAssembly } )
select tMoved]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types directly using one or several types changed</Name>
let typesChanged = Application.Types.Where(t => t.CodeWasChanged()).ToHashSet()
from t in JustMyCode.Types.UsingAny(typesChanged) where
!t.CodeWasChanged() &&
!t.WasAdded()
let typesChangedUsed = t.TypesUsed.Intersect(typesChanged)
select new { t, typesChangedUsed }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types indirectly using one or several types changed</Name>
let typesChanged = Application.Types.Where(t => t.CodeWasChanged()).ToHashSet()
// 'depth' represents a code metric defined on types using
// directly or indirectly any type where code was changed.
let depth = JustMyCode.Types.DepthOfIsUsingAny(typesChanged)
from t in depth.DefinitionDomain where
!t.CodeWasChanged() &&
!t.WasAdded()
let typesChangedDirectlyUsed = t.TypesUsed.Intersect(typesChanged)
let depthOfUsingTypesChanged = depth[t]
orderby depthOfUsingTypesChanged
select new { t, depthOfUsingTypesChanged, typesChangedDirectlyUsed }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>New methods</Name>
from m in Application.Methods where
!m.ParentType.WasAdded() &&
m.WasAdded()
select new { m, m.NbLinesOfCode }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods removed</Name>
from m in codeBase.OlderVersion().Application.Methods where
!m.ParentType.WasRemoved() &&
m.WasRemoved()
select new { m, m.NbLinesOfCode }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods where code was changed</Name>
// To visualize changes in code, right-click a matched method and select:
// - Compare older and newer versions of source file
// - Compare older and newer versions disassembled with Reflector
from m in Application.Methods where m.CodeWasChanged()
select new { m, m.NbLinesOfCode,
oldNbLinesOfCode = m.OlderVersion().NbLinesOfCode ,
delta = (int?) m.NbLinesOfCode - m.OlderVersion().NbLinesOfCode }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods directly calling one or several methods changed</Name>
let methodsChanged = Application.Methods.Where(m => m.CodeWasChanged()).ToHashSet()
from m in JustMyCode.Methods.UsingAny(methodsChanged ) where
!m.CodeWasChanged() &&
!m.WasAdded()
let methodsChangedCalled = m.MethodsCalled.Intersect(methodsChanged)
select new { m, methodsChangedCalled }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods indirectly calling one or several methods changed</Name>
let methodsChanged = Application.Methods.Where(m => m.CodeWasChanged()).ToHashSet()
// 'depth' represents a code metric defined on methods using
// directly or indirectly any method where code was changed.
let depth = JustMyCode.Methods.DepthOfIsUsingAny(methodsChanged)
from m in depth.DefinitionDomain where
!m.CodeWasChanged() &&
!m.WasAdded()
let methodsChangedDirectlyUsed = m.MethodsCalled.Intersect(methodsChanged)
let depthOfUsingMethodsChanged = depth[m]
orderby depthOfUsingMethodsChanged
select new { m, depthOfUsingMethodsChanged, methodsChangedDirectlyUsed }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>New fields</Name>
from f in Application.Fields where
!f.ParentType.WasAdded() &&
f.WasAdded()
select new { f }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Fields removed</Name>
from f in codeBase.OlderVersion().Application.Fields where
!f.ParentType.WasRemoved() &&
f.WasRemoved()
select new { f }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Third party types that were not used and that are now used</Name>
from t in ThirdParty.Types where t.IsUsedRecently()
select new { t, t.Methods, t.Fields, t.TypesUsingMe }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Third party types that were used and that are not used anymore</Name>
from t in codeBase.OlderVersion().Types where t.IsNotUsedAnymore()
select new { t, t.Methods, t.Fields, TypesThatUsedMe = t.TypesUsingMe }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Third party methods that were not used and that are now used</Name>
from m in ThirdParty.Methods where
m.IsUsedRecently() &&
!m.ParentType.IsUsedRecently()
select new { m, m.MethodsCallingMe }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Third party methods that were used and that are not used anymore</Name>
from m in codeBase.OlderVersion().Methods where
m.IsNotUsedAnymore() &&
!m.ParentType.IsNotUsedAnymore()
select new { m, MethodsThatCalledMe = m.MethodsCallingMe}]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Third party fields that were not used and that are now used</Name>
from f in ThirdParty.Fields where
f.IsUsedRecently() &&
!f.ParentType.IsUsedRecently()
select new { f, f.MethodsUsingMe }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Third party fields that were used and that are not used anymore</Name>
from f in codeBase.OlderVersion().Fields where
f.IsNotUsedAnymore() &&
!f.ParentType.IsNotUsedAnymore()
select new { f, MethodsThatUsedMe = f.MethodsUsingMe }]]></Query>
</Group>
<Group Name="Test and Code Coverage" Active="True" ShownInReport="True">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>C.R.A.P method code metric</Name>
// Change Risk Analyzer and Predictor (i.e. CRAP) code metric
// This code metric helps in pinpointing overly complex and untested code.
// Reference: http://www.artima.com/weblogs/viewpost.jsp?thread=215899
// Formula: CRAP(m) = comp(m)^2 * (1 cov(m)/100)^3 + comp(m)
warnif count > 0
from m in JustMyCode.Methods
// Don't match too short methods
where m.NbLinesOfCode > 10
let CC = m.CyclomaticComplexity
let uncov = (100 - m.PercentageCoverage) / 100f
let CRAP = (CC * CC * uncov * uncov * uncov) + CC
where CRAP != null && CRAP > 30
orderby CRAP descending, m.NbLinesOfCode descending
select new { m, CRAP, CC, uncoveredPercentage = uncov*100, m.NbLinesOfCode }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Complex methods partially covered by tests should be 100% covered</Name>
warnif count > 0 from m in JustMyCode.Methods
where
// These metrics' definitions are available here:
// http://www.ndepend.com/Metrics.aspx#MetricsOnMethods
( m.NbLinesOfCode > 30 ||
m.ILCyclomaticComplexity > 50 ||
m.ILNestingDepth > 4 ||
m.NbVariables > 8) &&
// Take care only of complex methods
// already partially covered, but not completely covered.
m.PercentageCoverage > 0 &&
m.PercentageCoverage < 100
orderby m.NbLinesOfCodeNotCovered ascending,
m.NbLinesOfCode descending
select new { m, m.PercentageCoverage, m.NbLinesOfCode,
m.NbLinesOfCodeCovered, m.NbLinesOfCodeNotCovered,
m.ILCyclomaticComplexity, m.ILNestingDepth, m.NbVariables } ]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Method changed poorly covered</Name>
from m in Application.Methods where
m.PercentageCoverage < 30 &&
m.CodeWasChanged()
orderby m.NbLinesOfCode descending,
m.NbLinesOfCodeNotCovered ,
m.PercentageCoverage
select new { m, m.PercentageCoverage, m.NbLinesOfCode,
m.NbLinesOfCodeNotCovered }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Method added poorly covered</Name>
from m in Application.Methods where
m.NbLinesOfCode > 0 &&
m.PercentageCoverage < 30 &&
m.WasAdded()
orderby m.NbLinesOfCode descending,
m.NbLinesOfCodeNotCovered ,
m.PercentageCoverage
select new { m, m.PercentageCoverage, m.NbLinesOfCode,
m.NbLinesOfCodeNotCovered }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types 95% to 99% covered</Name>
from t in Application.Types where
t.PercentageCoverage >= 95 &&
t.PercentageCoverage <= 99 &&
!t.IsGeneratedByCompiler
let methodsCulprit = t.Methods.Where(m => m.PercentageCoverage < 100)
orderby t.NbLinesOfCode descending ,
t.NbLinesOfCodeNotCovered ,
t.PercentageCoverage
select new { t, t.PercentageCoverage, t.NbLinesOfCode,
t.NbLinesOfCodeNotCovered, methodsCulprit }
// Having types 100% covered by tests is a good idea because
// the small portion of code hard to cover, is also the
// portion of code that is the most likely to contain bugs.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Namespaces 95% to 99% covered</Name>
from n in Application.Namespaces where
n.PercentageCoverage >= 95 &&
n.PercentageCoverage <= 99
let methodsCulprit = n.ChildMethods.Where(m => m.PercentageCoverage < 100)
orderby n.NbLinesOfCode descending ,
n.NbLinesOfCodeNotCovered ,
n.PercentageCoverage
select new { n, n.PercentageCoverage, n.NbLinesOfCode,
n.NbLinesOfCodeNotCovered, methodsCulprit }
// Having types 100% covered by tests is a good idea because
// the small portion of code hard to cover, is also the
// portion of code that is the most likely to contain bugs.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types tagged with FullCoveredAttribute should be 100% covered</Name>
warnif count > 0
from t in Application.Types where
t.HasAttribute ("NDepend.Attributes.FullCoveredAttribute".AllowNoMatch()) &&
t.PercentageCoverage < 100
let notFullCoveredMethods = t.Methods.Where(
m => m.NbLinesOfCode> 0 &&
m.PercentageCoverage < 100 &&
!m.HasAttribute("NDepend.Attributes.UncoverableByTestAttribute".AllowNoMatch()))
orderby t.NbLinesOfCodeNotCovered descending
select new { t, t.PercentageCoverage, t.NbLinesOfCodeNotCovered, notFullCoveredMethods,
t.NbLinesOfCode, t.NbLinesOfCodeCovered }
// By using a FullCoveredAttribute, you can signify to developers
// that a class is, and must remain in the future, 100% covered by tests.
// If you don't want to link NDepend.API.dll,
// you can use your own attribute and adapt this rule.
// Having types 100% covered by tests is a good idea because
// the small portion of code hard to cover, is also the
// portion of code that is the most likely to contain bugs.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types 100% covered should be tagged with FullCoveredAttribute</Name>
warnif count > 0 from t in JustMyCode.Types where
!t.HasAttribute ("NDepend.Attributes.FullCoveredAttribute".AllowNoMatch()) &&
t.PercentageCoverage == 100 &&
!t.IsGeneratedByCompiler
select new { t, t.NbLinesOfCode }
// By using a FullCoveredAttribute, you can signify to developers
// that a class is, and must remain in the future, 100% covered by tests.
// If you don't want to link NDepend.API.dll, you can use your own attribute and adapt this rule.
// Having types 100% covered by tests is a good idea because
// the small portion of code hard to cover, is also the
// portion of code that is the most likely to contain bugs.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types not covered at all</Name>
from t in Application.Types where
t.PercentageCoverage == 0
orderby t.NbLinesOfCode descending
select new { t, t.NbLinesOfCode }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Namespaces not covered at all</Name>
from n in Application.Namespaces where
n.PercentageCoverage == 0
orderby n.NbLinesOfCode descending
select new { n, n.NbLinesOfCode}
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Test Methods</Name>
// We advise to not include test assemblies in code analyzed by NDepend.
// But if you wish the current query to run properly,
// you'll need to consider test assemblies in your list of application assemblies analyzed by NDepend..
let testAttr = ThirdParty.Types.WithNameIn("TestAttribute", "TestCaseAttribute")
let testMethods = Methods.TaggedWithAnyAttributes(testAttr)
from m in testMethods
select m
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods directly called by test Methods</Name>
// Lists all methods directly called by tests methods.
// Overrides of virtual and absract methods, called through polymorphism, are not listed.
// Methods solely invoked through a delegate are not listed.
// Methods solely invoked through reflection are not listed.
// We advise to not include test assemblies in code analyzed by NDepend.
// But if you wish the current query to run properly,
// you'll need to consider test assemblies in your list of application assemblies analyzed by NDepend..
let testAttr = ThirdParty.Types.WithNameIn("TestAttribute", "TestCaseAttribute")
let testMethods = Methods.TaggedWithAnyAttributes(testAttr).ToHashSet()
// --- Uncomment this line if your test methods are in dedicated test assemblies ---
//let testAssemblies = testMethods.ParentAssemblies().ToHashSet()
from m in Application.Methods.UsedByAny(testMethods)
// --- Uncomment this line if your test methods are in dedicated test assemblies ---
//where !testAssemblies.Contains(m.ParentAssembly)
select new { m ,
calledByTests = m.MethodsCallingMe.Intersect(testMethods ),
// --- Uncomment this line if your project import some coverage data ---
// m.PercentageCoverage
}]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods directly and indirectly called by test Methods</Name>
// Lists all methods called directly or indirectly by tests methods.
// Overrides of virtual and absract methods, called through polymorphism, are not listed.
// Methods solely invoked through a delegate are not listed.
// Methods solely invoked through reflection are not listed.
// We advise to not include test assemblies in code analyzed by NDepend.
// But if you wish the current query to run properly,
// you'll need to consider test assemblies in your list of application assemblies analyzed by NDepend.
let testAttr = from t in ThirdParty.Types.WithNameIn("TestAttribute", "TestCaseAttribute") select t
let testMethods = Methods.TaggedWithAnyAttributes(testAttr)
// --- Uncomment this line if your test methods are in dedicated test assemblies ---
// let testAssemblies = testMethods.ParentAssemblies().ToHashSet()
let depthOfCalledByTest = Application.Methods.DepthOfIsUsedByAny(testMethods)
from pair in depthOfCalledByTest
where pair.Value > 0
orderby pair.Value ascending
// --- Uncomment this line if your test methods are in dedicated test assemblies ---
//&& !testAssemblies.Contains(pair.CodeElement.ParentAssembly)
select new {
method = pair.CodeElement,
// (depthOfCalledByTests == 1) means that the method is directly called by tests
// (depthOfCalledByTests == 2) means that the method is directly called by a method directly called by tests
// ...
depthOfCalledByTests = pair.Value,
// --- Uncomment this line if your project import some coverage data ---
// m.PercentageCoverage
}]]></Query>
</Group>
<Group Name="Dead Code" Active="True" ShownInReport="True">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Potentially dead Types</Name>
warnif count > 0
// Filter procedure for types that should'nt be considered as dead
let canTypeBeConsideredAsDeadProc = new Func<IType, bool>(
t => !t.IsPublic && // Public types might be used by client applications of your assemblies.
t.Name != "Program" &&
!t.IsGeneratedByCompiler &&
// If you don't want to link NDepend.API.dll, you can use your own IsNotDeadCodeAttribute and adapt this rule.
!t.HasAttribute("NDepend.Attributes.IsNotDeadCodeAttribute".AllowNoMatch()) &&
// Exclude static types that define only const fields
// because they cannot be seen as used in IL code.
!(t.IsStatic && t.NbMethods == 0 && !t.Fields.Where(f => !f.IsLiteral).Any()))
// Select types unused
let typesUnused =
from t in JustMyCode.Types where
t.NbTypesUsingMe == 0 && canTypeBeConsideredAsDeadProc(t)
select t
// Dead types = types used only by unused types (recursive)
let deadTypesMetric = typesUnused.FillIterative(
types => from t in codeBase.Application.Types.UsedByAny(types).Except(types)
where canTypeBeConsideredAsDeadProc(t) &&
t.TypesUsingMe.Intersect(types).Count() == t.NbTypesUsingMe
select t)
from t in deadTypesMetric.DefinitionDomain
select new { t, t.TypesUsingMe, depth = deadTypesMetric[t] }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Potentially dead Methods</Name>
warnif count > 0
// Filter procedure for methods that should'nt be considered as dead
let canMethodBeConsideredAsDeadProc = new Func<IMethod, bool>(
m => !m.IsPubliclyVisible && // Public methods might be used by client applications of your assemblies.
!m.IsEntryPoint && // Main() method is not used by-design.
!m.IsExplicitInterfaceImpl && // The IL code never explicitely calls explicit interface methods implementation.
!m.IsClassConstructor && // The IL code never explicitely calls class constructors.
!m.IsFinalizer && // The IL code never explicitely calls finalizers.
!m.IsVirtual && // Only check for non virtual method that are not seen as used in IL.
!(m.IsConstructor && // Don't take account of protected ctor that might be call by a derived ctors.
m.IsProtected) &&
!m.IsEventAdder && // The IL code never explicitely calls events adder/remover.
!m.IsEventRemover &&
!m.IsGeneratedByCompiler &&
!m.ParentType.IsDelegate &&
// Methods tagged with these two attributes are called by the serialization infrastructure.
!m.HasAttribute("System.Runtime.Serialization.OnSerializingAttribute".AllowNoMatch()) &&
!m.HasAttribute("System.Runtime.Serialization.OnDeserializedAttribute".AllowNoMatch()) &&
// If you don't want to link NDepend.API.dll, you can use your own IsNotDeadCodeAttribute and adapt this rule.
!m.HasAttribute("NDepend.Attributes.IsNotDeadCodeAttribute".AllowNoMatch()))
// Get methods unused
let methodsUnused =
from m in JustMyCode.Methods where
m.NbMethodsCallingMe == 0 &&
canMethodBeConsideredAsDeadProc(m)
select m
// Dead methods = methods used only by unused methods (recursive)
let deadMethodsMetric = methodsUnused.FillIterative(
methods => // Unique loop, just to let a chance to build the hashset.
from o in (new object()).ToEnumerable()
// Use a hashet to make Intersect calls much faster!
let hashset = methods.ToHashSet()
from m in codeBase.Application.Methods.UsedByAny(methods).Except(methods)
where canMethodBeConsideredAsDeadProc(m) &&
// Select methods called only by methods already considered as dead
hashset.Intersect(m.MethodsCallingMe).Count() == m.NbMethodsCallingMe
select m)
from m in JustMyCode.Methods.Intersect(deadMethodsMetric.DefinitionDomain)
select new { m, m.MethodsCallingMe, depth = deadMethodsMetric[m] }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Potentially dead Fields</Name>
warnif count > 0
from f in JustMyCode.Fields where
f.NbMethodsUsingMe == 0 &&
!f.IsPublic && // Although not recommended, public fields might be used by client applications of your assemblies.
!f.IsLiteral && // The IL code never explicitely uses literal fields.
!f.IsEnumValue && // The IL code never explicitely uses enumeration value.
f.Name != "value__" && // Field named 'value__' are relative to enumerations and the IL code never explicitely uses them.
!f.HasAttribute("NDepend.Attributes.IsNotDeadCodeAttribute".AllowNoMatch()) &&
!f.IsGeneratedByCompiler
// If you don't want to link NDepend.API.dll, you can use your own IsNotDeadCodeAttribute and adapt this rule.
select f]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Wrong usage of IsNotDeadCodeAttribute</Name>
// This IsNotDeadCodeAttribute can be used to signify that
// despite a member could be removed without provoking any syntax error
// (we also say it is dead code), your intention is to not remove this member.
// Default 'Dead Code' code rules take account of this attribute.
// IsNotDeadCodeAttribute is defined in NDepend.API.dll
// If you don't want to link NDepend.API.dll, you can use
// your own IsNotDeadCodeAttribute and adapt this rule.
warnif count == 1
let tAttr = Types.WithFullName("NDepend.Attributes.IsNotDeadCodeAttribute").FirstOrDefault()
where tAttr != null
// Get types that do a wrong usage of IsNotDeadCodeAttribute
let types = from t in Application.Types where
t.HasAttribute("NDepend.Attributes.IsNotDeadCodeAttribute".AllowNoMatch()) &&
( // types used don't need to be tagged with IsNotDeadCodeAttribute!
t.NbTypesUsingMe > 0 ||
// Static types that define only const fields cannot be seen as used in IL code.
// They don't need to be tagged with IsNotDeadCodeAttribute.
(t.IsStatic && t.NbMethods == 0 && !t.Fields.Where(f => !f.IsLiteral).Any())
)
select t
// Get methods that do a wrong usage of IsNotDeadCodeAttribute
let methods = from m in Application.Methods where
m.HasAttribute("NDepend.Attributes.IsNotDeadCodeAttribute".AllowNoMatch()) &&
m.NbMethodsCallingMe > 0
select m
// Get fields that do a wrong usage of IsNotDeadCodeAttribute
let fields = from f in Application.Fields where
f.HasAttribute("NDepend.Attributes.IsNotDeadCodeAttribute".AllowNoMatch()) &&
f.NbMethodsUsingMe > 0
select f
where types.Count() > 0 || methods.Count() > 0 || fields.Count() > 0
select new { tAttr, types , methods, fields }]]></Query>
</Group>
<Group Name="Visibility" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods that could have a lower visibility</Name>
warnif count > 0 from m in JustMyCode.Methods where
m.Visibility != m.OptimalVisibility &&
!m.HasAttribute("NDepend.Attributes.CannotDecreaseVisibilityAttribute".AllowNoMatch()) &&
!m.HasAttribute("NDepend.Attributes.IsNotDeadCodeAttribute".AllowNoMatch()) &&
// If you don't want to link NDepend.API.dll, you can use your own attributes and adapt this rule.
// Eliminate default constructor from the result.
// Whatever the visibility of the declaring class,
// default constructors are public and introduce noise
// in the current rule.
!( m.IsConstructor && m.IsPublic && m.NbParameters == 0) &&
// Don't decrease the visibility of Main() methods.
!m.IsEntryPoint
select new { m,
m.Visibility ,
CouldBeDeclared = m.OptimalVisibility,
m.MethodsCallingMe }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types that could have a lower visibility</Name>
warnif count > 0 from t in JustMyCode.Types where
t.Visibility != t.OptimalVisibility &&
// If you don't want to link NDepend.API.dll, you can use your own attributes and adapt this rule.
!t.HasAttribute("NDepend.Attributes.CannotDecreaseVisibilityAttribute".AllowNoMatch()) &&
!t.HasAttribute("NDepend.Attributes.IsNotDeadCodeAttribute".AllowNoMatch()) &&
// Static types that define only const fields cannot be seen as used in IL code.
// They don't have to be tagged with CannotDecreaseVisibilityAttribute.
!( t.IsStatic &&
!t.Methods.Any(m => !m.IsClassConstructor) &&
!t.Fields.Any(f => !f.IsLiteral && !(f.IsStatic && f.IsInitOnly))) &&
// A type used by an interface that has the same visibility
// cannot have its visibility decreased, else a compilation error occurs!
!t.TypesUsingMe.Any(tUser =>
tUser.IsInterface &&
tUser.Visibility == t.Visibility)
select new { t, t.Visibility ,
CouldBeDeclared = t.OptimalVisibility,
t.TypesUsingMe }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Fields that could have a lower visibility</Name>
warnif count > 0 from f in JustMyCode.Fields where
f.Visibility != f.OptimalVisibility &&
!f.HasAttribute("NDepend.Attributes.CannotDecreaseVisibilityAttribute".AllowNoMatch()) &&
!f.HasAttribute("NDepend.Attributes.IsNotDeadCodeAttribute".AllowNoMatch())
// If you don't want to link NDepend.API.dll, you can use your own attributes and adapt this rule.
select new { f,
f.Visibility ,
CouldBeDeclared = f.OptimalVisibility,
f.MethodsUsingMe }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types that could be declared as private, nested in a parent type</Name>
// The conditions for a type to be nested into a parent type
// is that the parent type is the only type using it,
// and that the parent type is declared in the same namespace.
//
// Declaring a type as private into a parent type helps enforcing encapsulation.
// But since nested private types are hardly testable, this rule might
// not be applied for types used directly by tests.
warnif count > 0
from t in Application.Types
where !t.IsGeneratedByCompiler &&
!t.IsNested &&
!t.IsPubliclyVisible &&
// Only one type user...
t.TypesUsingMe.Count() == 1
let couldBeNestedIn = t.TypesUsingMe.Single()
where !couldBeNestedIn.IsGeneratedByCompiler &&
// ...declared in the same namespace
couldBeNestedIn.ParentNamespace == t.ParentNamespace
select new { t, couldBeNestedIn }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid publicly visible constant fields</Name>
// Match constant fields which are visible outside their parent assembly.
// Such field, when used outside its parent assembly,
// has its constant value hard-coded into the client assembly.
// Changing the field's value requires to recompile all assemblies
// that use the field.
// Declare the field as static readonly instead. This way, the value can be
// safely changed, without the need to recompile client assemblies.
warnif count > 0
from f in Application.Fields
where f.IsLiteral && f.IsPubliclyVisible
&& !f.IsEnumValue // This situation also applies to enumeration values
// but to avoid too many false positives, per default
// this rule doesn't match these particular fields.
select f]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Fields should be declared as private</Name>
// Fields should be considered as implementation details
// and as a consequence they should be declared as private.
// When a field is private, the caller cannot get
// inappropriate direct access to the field.
warnif count > 0 from f in Application.Fields where
!f.IsPrivate &&
// These conditions filter cases where fields
// doesn't represent state that should be encapsulated.
!f.IsGeneratedByCompiler &&
!f.IsSpecialName &&
!f.IsInitOnly &&
!f.IsLiteral &&
!f.IsEnumValue
// A non-private field assigned from outside its class,
// usually leads to complicated field state management.
let outsideMethodsAssigningMe =
f.MethodsAssigningMe.Where(m => m.ParentType != f.ParentType)
select new { f,
f.Visibility,
outsideMethodsAssigningMe }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Constructors of abstract classes should be declared as protected or private</Name>
// Constructors of an abstract class can be accessed only from its class and derived class.
// Declaring such a constructor with another visibility level is useless and potentially misleading.
// Notice that if a constructor of an abstract class is declared as private,
// it can only be accessed from derived classes nested in the abstract class.
warnif count > 0
from t in Application.Types where
t.IsClass &&
t.IsAbstract
let ctors = t.Constructors.Where(c => !c.IsProtected && !c.IsPrivate)
where ctors.Count() > 0
select new { t, ctors }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[//<Name>Avoid public methods not publicly visible</Name>
// Matched methods are declared public but are not publicly visible by assemblies consumers.
// Their visibility level must be decreased.
warnif count > 0
from m in JustMyCode.Methods where
!m.IsPubliclyVisible && m.IsPublic &&
// Eliminate virtual methods
!m.IsVirtual &&
// Eliminate interface and delegate types
!m.ParentType.IsInterface &&
!m.ParentType.IsDelegate &&
// Eliminate default constructors
!(m.IsConstructor && m.NbParameters == 0) &&
// Eliminate operators that must be declared public
!m.IsOperator &&
// Eliminate methods generated by compiler
!m.IsGeneratedByCompiler
select m]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods that should be declared as 'public' in C#, 'Public' in VB.NET</Name>
// The condition 'ShouldBePublic' shows code elements
// declared as 'internal\Friend' that are used outside
// of their assembly thanks to the Attribute
// System.Runtime.CompilerServices.InternalsVisibleToAttribute
from m in Application.Methods where
m.ShouldBePublic
let usedInAssemblies = m.MethodsCallingMe.ParentAssemblies().Except(m.ParentAssembly)
select new { m, m.ParentAssembly, usedInAssemblies, m.MethodsCallingMe }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Wrong usage of CannotDecreaseVisibilityAttribute</Name>
// The CannotDecreaseVisibilityAttribute can be used to signify that despite
// a member could have a lower visibility without provoking any syntax error,
// your intention is to not change this member visibility.
// Default Visibility code rules take account of this attribute.
// CannotDecreaseVisibilityAttribute is defined in NDepend.API.dll
// If you don't want to link NDepend.API.dll, you can use
// your own CannotDecreaseVisibilityAttribute and adapt this rule.
warnif count == 1
let tAttr = Types.WithFullName("NDepend.Attributes.CannotDecreaseVisibilityAttribute").FirstOrDefault()
where tAttr != null
// Get types that do a wrong usage of CannotDecreaseVisibilityAttribute
let types = from t in Application.Types where
t.HasAttribute("NDepend.Attributes.CannotDecreaseVisibilityAttribute".AllowNoMatch()) &&
( t.Visibility == t.OptimalVisibility ||
// Static types that define only const fields cannot be seen as used in IL code.
// They don't need to be tagged with CannotDecreaseVisibilityAttribute.
(t.IsStatic && t.NbMethods == 0 && !t.Fields.Where(f => !f.IsLiteral).Any())
)
select t
// Get methods that do a wrong usage of CannotDecreaseVisibilityAttribute
let methods = from m in Application.Methods where
m.HasAttribute("NDepend.Attributes.CannotDecreaseVisibilityAttribute".AllowNoMatch()) &&
m.Visibility == m.OptimalVisibility
select m
// Get fields that do a wrong usage of CannotDecreaseVisibilityAttribute
let fields = from f in Application.Fields where
f.HasAttribute("NDepend.Attributes.CannotDecreaseVisibilityAttribute".AllowNoMatch()) &&
f.Visibility == f.OptimalVisibility
select f
where types.Count() > 0 || methods.Count() > 0 || fields.Count() > 0
select new { tAttr, types , methods, fields }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Event handler methods should be declared private</Name>
warnif count > 0
from m in Application.Methods where
!m.IsPrivate &&
// A method is considered as event handler if...
m.NbParameters==2 && // ...it has two parameters..
m.Name.Contains("Object") && // ...of types Object...
m.Name.Contains("EventArgs") && // ...and EventArgs
// Discard special cases
!m.ParentType.IsDelegate &&
!m.IsGeneratedByCompiler
select new { m,m.Visibility }
// This rule implementation relies on the facts that:
// -> A method name contains the type of its parameters.
// -> All EventArgs derived types have the suffix "EventArgs".]]></Query>
</Group>
<Group Name="Purity - Immutability - Side-Effects" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Fields should be marked as ReadOnly when possible</Name>
warnif count > 0
from f in JustMyCode.Fields where
f.IsImmutable &&
!f.IsInitOnly &&
!f.IsGeneratedByCompiler &&
!f.IsEventDelegateObject
select new { f, f.SizeOfInst }
// A field that matches the condition IsImmutable
// is a field that is assigned only by constructors
// of its class.
// For an instance field, this means its value
// will remain constant throught the lifetime
// of the object.
// For a static field, this means its value will
// remain constant throught the lifetime of the
// program.
// In both cases, such field can safely be marked
// with the C# readonly keyword
// (ReadOnly in VB.NET).
// The condition IsInitOnly matches fields that
// are marked with the C# readonly keyword
// (ReadOnly in VB.NET).
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Structures should be immutable</Name>
warnif count > 0 from t in Application.Types where
t.IsStructure &&
!t.IsImmutable
let mutableFields = t.Fields.Where(f => !f.IsImmutable)
select new { t, t.NbLinesOfCode, mutableFields }
// It is deemed as a good practice to make
// your structure immutable.
// An object is immutable if its state doesnt
// change once the object has been created.
// Consequently, a structure is immutable if
// its instances are immutable.
// Immutable types naturally simplify code by
// limiting side-effects.
// See some explanations on immutability and
// how NDepend supports it here:
// http://codebetter.com/blogs/patricksmacchia/archive/2008/01/13/immutable-types-understand-them-and-use-them.aspx
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Property Getters should be immutable</Name>
warnif count > 0 from m in Application.Methods where
m.IsPropertyGetter &&
( ( !m.IsStatic && m.ChangesObjectState) ||
( m.IsStatic && m.ChangesTypeState) )
let fieldsAssigned = m.FieldsAssigned
select new { m, m.NbLinesOfCode, fieldsAssigned }
// This rule might be violated in the case of object lazy initialized
// when the property getter is accessed the first time.
// But in general, the callers of a property
// doesn't expect to change any state through the call.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid static fields with a mutable field type</Name>
warnif count > 0
from f in Application.Fields
where f.IsStatic && !f.IsEnumValue && !f.IsGeneratedByCompiler && !f.IsLiteral
let fieldType = f.FieldType
where fieldType != null &&
!fieldType.IsThirdParty &&
!fieldType.IsInterface &&
!fieldType.IsImmutable
select new { f,
mutableFieldType = fieldType ,
isFieldImmutable = f.IsImmutable,
isFieldIsReadOnly = f.IsInitOnly }
// As explained in this blog post
// http://codebetter.com/patricksmacchia/2011/05/04/back-to-basics-usage-of-static-members
// static fields should be used to hold only constant and immutable states.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>A field must not be assigned from outside its parent hierarchy types</Name>
warnif count > 0
from f in JustMyCode.Fields.Where(f =>
!f.IsPrivate && !f.IsGeneratedByCompiler &&
!f.IsImmutable && !f.IsEnumValue)
let methodsAssignerOutsideOfMyType = f.MethodsAssigningMe.Where(
m =>!m.IsGeneratedByCompiler &&
m.ParentType != f.ParentType &&
!m.ParentType.DeriveFrom(f.ParentType) )
where methodsAssignerOutsideOfMyType.Count() > 0
select new { f, methodsAssignerOutsideOfMyType }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Don't assign a field from many methods</Name>
warnif count > 0
from f in JustMyCode.Fields where
!f.IsEnumValue &&
!f.IsImmutable &&
!f.IsInitOnly &&
!f.IsGeneratedByCompiler &&
!f.IsEventDelegateObject &&
(f.IsPrivate || f.IsProtected) // Don't match fields assigned outside their classes.
// The threshold 4 is arbitrary and it should avoid matching too many fields.
// Threshold is even lower for static fields because this reveals situations even more complex.
where f.MethodsAssigningMe.Count() >= (!f.IsStatic ? 4 : 2)
select new { f,
f.MethodsAssigningMe,
f.MethodsReadingMeButNotAssigningMe,
f.MethodsUsingMe,
f.ParentType }
// A field assigned from many methods is a symptom of bug-prone code.
// This situation makes harder to anticipate the field state during runtime.
// The code is then hard to read, hard to debug and hard to maintain.
// Hard-to-solve bugs due to corrupted state are often the consequence of fields anarchically assigned.
//
// The situation is even more complex if the field is static.
// Indeed, this potentially involves global random accesses from different parts of the application.
// This is why this rule provides a lower threshold for static fields.
//
// If the object containing such field is meant to be used from multiple threads,
// there are alarming chances that the code is unmaintainable and bugged.
// When multiple threads are involved, the rule of thumb is to use immutable objects.
//
// If the field type is a reference type (interfaces, classes, strings, delegates)
// corrupted state might result in a NullReferenceException.
// If the field type is a value type (number, boolean, structure)
// corrupted state might result in wrong result not even signaled by an exception sent.
//
// There is no straight advice to refactor the number of methods responsible for assigning a field.
// Solutions often involve rethinking and then rewriting a complex algorithm.
// Such field can sometime become just a variable accessed locally by a method or a closure.
// Sometime, just rethinking the life-time and the role of the parent object allows the field to become immutable
// (i.e assigned only by the constructor).
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Do not declare read only mutable reference types</Name>
warnif count > 0 from f in JustMyCode.Fields where
f.IsInitOnly &&
!f.ParentType.IsPrivate &&
!f.IsPrivate &&
f.FieldType != null &&
f.FieldType.IsClass &&
!f.FieldType.IsThirdParty &&
!f.FieldType.IsImmutable
select new { f, f.FieldType, FieldVisibility = f.Visibility }
// This rule is violated when a public or internal
// type contains a public or internal read-only field
// that is a mutable reference type.
//
// This situation provides the wrong impression that the
// value can't change, when actually it's only the field
// value that can't change, rather than the object.
//
// To fix a violation of this rule, remove the read-only
// modifier or, if a breaking change is acceptable,
// replace the field with an immutable type.
//
// An object is immutable if its state doesnt
// change once the object has been created.
// Consequently, a class or a structure is
// immutable if its instances are immutable.
// Immutable types naturally simplify code by
// limiting side-effects.
]]></Query>
<Query Active="True" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Array fields should not be read only</Name>
warnif count > 0 from f in Application.Fields where
f.IsInitOnly &&
f.IsPubliclyVisible &&
f.FieldType != null &&
f.FieldType.FullName == "System.Array"
select new { f, FieldVisibility = f.Visibility }
// This rule is violated when a publicly visible field
// that holds an array, is declared read-only.
//
// This situation represents a security vulnerability.
// Because the field is read-only it cannot be changed to refer
// to a different array. However, the elements of the array
// that are stored in a read-only field can be changed.
// Code that makes decisions or performs operations that are
// based on the elements of a read-only array that can be publicly
// accessed might contain an exploitable security vulnerability.
//
// To fix the security vulnerability that is identified by ,
// this rule do not rely on the contents of a read-only array
// that can be publicly accessed. It is strongly recommended
// that you use one of the following procedures:
//
// -> Replace the array with a strongly typed collection
// that cannot be changed. For more information,
// see System.Collections.Generic.IReadOnlyList<T>
// System.Collections.Generic.IReadOnlyCollection<T>
// System.Collections.ReadOnlyCollectionBase.
//
// -> Replace the public field with a method that returns a clone
// of a private array. Because your code does not rely on
// the clone, there is no danger if the elements are modified.
]]></Query>
<Query Active="True" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types immutable should be tagged with ImmutableAttribute</Name>
from t in Application.Types where
!t.HasAttribute ("NDepend.Attributes.ImmutableAttribute".AllowNoMatch()) &&
t.IsImmutable
select new { t, t.NbLinesOfCode }
// Types matched by this query are immutable but
// are not tagged with the ImmutableAttribute.
// The benefit of tagging them with the ImmutableAttribute
// is that the rule 'Regression on immutable types'
// will warn when the immutability of a type gets broken.
// NDepend.Attributes.ImmutableAttribute is defined in the
// redistributable assembly $NDependInstallDir$\Lib\NDepend.API.dll
// You can define your own attribute to tag 'immutable' types.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods tagged with PureAttribute must be pure</Name>
warnif count > 0 from m in Application.Methods where
( m.HasAttribute ("NDepend.Attributes.PureAttribute".AllowNoMatch()) ||
m.HasAttribute ("System.Diagnostics.Contract.PureAttribute".AllowNoMatch()) ) &&
( m.ChangesObjectState || m.ChangesTypeState ) &&
m.NbLinesOfCode > 0
let fieldsAssigned = m.FieldsAssigned
select new { m, m.NbLinesOfCode, fieldsAssigned }
// A method is pure if its execution doesnt change
// the value of any instance or static field.
// Pure methods naturally simplify code by limiting
// side-effects.
// See some explanations on immutability - purity and
// how NDepend supports it here:
// http://codebetter.com/blogs/patricksmacchia/archive/2008/01/13/immutable-types-understand-them-and-use-them.aspx
// NDepend.Attributes.PureAttribute is defined in the
// redistributable assembly $NDependInstallDir$\Lib\NDepend.API.dll
// You can define your own attribute to tag 'pure' methods
// or you can use as well System.Diagnostics.Contract.PureAttribute
// introduced with .NET v4.0.
]]></Query>
<Query Active="True" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Pure methods should be tagged with PureAttribute</Name>
from m in Application.Methods where
!m.HasAttribute ("NDepend.Attributes.PureAttribute".AllowNoMatch()) &&
!m.HasAttribute ("System.Diagnostics.Contract.PureAttribute".AllowNoMatch()) &&
!m.ChangesObjectState && !m.ChangesTypeState &&
m.NbLinesOfCode > 0
select new { m, m.NbLinesOfCode }
// Methods matched by this query are pure but
// are not tagged with the PureAttribute.
// The benefit of tagging them with the PureAttribute
// is that the rule 'Regression on pure methods'
// will warn when the purity of a method gets broken.
// NDepend.Attributes.PureAttribute is defined in the
// redistributable assembly $NDependInstallDir$\Lib\NDepend.API.dll
// You can define your own attribute to tag 'pure' methods
// or you can use as well System.Diagnostics.Contract.PureAttribute
// introduced with .NET v4.0.]]></Query>
</Group>
<Group Name="Naming Conventions" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Instance fields should be prefixed with a 'm_'</Name>
warnif count > 0 from f in Application.Fields where
!f.NameLike (@"^m_") &&
!f.IsStatic &&
!f.IsLiteral &&
!f.IsGeneratedByCompiler &&
!f.IsSpecialName &&
!f.IsEventDelegateObject
select new { f, f.SizeOfInst }
// This naming convention provokes debate.
// Don't hesitate to customize the regex of
// NameLike to your preference.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Static fields should be prefixed with a 's_'</Name>
warnif count > 0 from f in Application.Fields where
!f.NameLike (@"^s_") &&
f.IsStatic &&
!f.IsLiteral &&
!f.IsGeneratedByCompiler &&
!f.IsSpecialName &&
!f.IsEventDelegateObject
select new { f, f.SizeOfInst }
// This naming convention provokes debate.
// Don't hesitate to customize the regex of
// NameLike to your preference.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Interface name should begin with a 'I'</Name>
warnif count > 0 from t in Application.Types where
t.IsInterface
// Discard outter type(s) name prefix for nested types
let name = !t.IsNested ? t.Name : t.Name.Substring(t.Name.LastIndexOf('+') + 1, t.Name.Length - t.Name.LastIndexOf('+') - 1)
where name[0] != 'I'
select t
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Abstract base class should be suffixed with 'Base'</Name>
warnif count > 0 from t in Application.Types where
t.IsAbstract &&
t.IsClass &&
// equivalent to: DepthOfDeriveFrom "System.Object" == 1
t.DepthOfInheritance == 1 &&
((!t.IsGeneric && !t.NameLike (@"Base$")) ||
( t.IsGeneric && !t.NameLike (@"Base<")))
select new { t, t.DepthOfInheritance }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Exception class name should be suffixed with 'Exception'</Name>
warnif count > 0 from t in Application.Types where
t.IsExceptionClass &&
!t.NameLike (@"Exception$") &&
!t.NameLike (@"ExceptionBase$") // Allow the second suffix Base
// for base exception classes.
select new { t, t.NbLinesOfCode }
// The name of an exception class should end with 'Exception'.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Attribute class name should be suffixed with 'Attribute'</Name>
warnif count > 0 from t in Application.Types where
t.IsAttributeClass &&
!t.NameLike (@"Attribute$")
select new { t, t.NbLinesOfCode }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types name should begin with an Upper character</Name>
warnif count > 0 from t in JustMyCode.Types where
// The name of a type should begin with an Upper letter.
!t.SimpleNameLike (@"^[A-Z]") &&
// Except if it is generated by compiler or ...
!t.IsSpecialName &&
!t.IsGeneratedByCompiler
select new { t, t.NbLinesOfCode }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods name should begin with an Upper character</Name>
warnif count > 0 from m in JustMyCode.Methods where
!m.NameLike (@"^[A-Z]") &&
!m.IsSpecialName &&
!m.IsGeneratedByCompiler
select m
// The name of a regular method should
// begin with an Upper letter.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Do not name enum values 'Reserved'</Name>
warnif count > 0 from f in Application.Fields where
f.IsEnumValue &&
f.NameLike (@"Reserved")
select new { f, f.SizeOfInst }
// This rule assumes that an enumeration member
// with a name that contains "reserved"
// is not currently used but is a placeholder to
// be renamed or removed in a future version.
// Renaming or removing a member is a breaking
// change. You should not expect users to ignore
// a member just because its name contains
// "reserved" nor can you rely on users to read or
// abide by documentation. Furthermore, because
// reserved members appear in object browsers
// and smart integrated development environments,
// they can cause confusion as to which members
// are actually being used.
// Instead of using a reserved member, add a
// new member to the enumeration in the future
// version.
// In most cases, the addition of the new
// member is not a breaking change, as long as the
// addition does not cause the values of the
// original members to change.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid types with name too long</Name>
warnif count > 0 from t in Application.Types
where !t.IsGeneratedByCompiler
where t.SimpleName.Length > 35
select new { t, t.SimpleName }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid methods with name too long</Name>
warnif count > 0 from m in Application.Methods where
!m.IsExplicitInterfaceImpl &&
!m.IsGeneratedByCompiler &&
((!m.IsSpecialName && m.SimpleName.Length > 35) ||
// Property getter/setter are prefixed with "get_" "set_" of length 4.
( m.IsSpecialName && m.SimpleName.Length - 4 > 35))
select new { m, m.SimpleName }
// The regex matches methods with name longer
// than 35 characters.
// Method Name doesn't contain the type and namespace
// prefix, FullName does.
// The regex computes the method name length from
// the beginning until the first open parenthesis
// or first lower than (for generic methods).
// Explicit Interface Implementation methods are
// discarded because their names are prefixed
// with the interface name.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid fields with name too long</Name>
warnif count > 0 from f in Application.Fields where
!f.IsGeneratedByCompiler &&
f.Name.Length > 35
select f
// The regex matches fields with name longer
// than 35 characters.
// Field Name doesn't contain the type and
// namespace prefix, FullName does.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Avoid having different types with same name</Name>
// Such practice typically creates confusion,
// and type naming collision inside a source file.
warnif count > 0
// This rule matches also collisions between
// application and third-party types sharing a same name.
let groups = JustMyCode.Types.Union(ThirdParty.Types)
// Discard nested types, whose name is
// prefixed with the parent type name.
.Where(t => !t.IsNested)
// Group types by name.
.GroupBy(t => t.Name)
from @group in groups
where @group.Count() > 1
// Let's see if types with the same name are declared
// in different namespaces.
// (t.FullName is {namespaceName}.{typeName} )
let groupsFullName = @group.GroupBy(t => t.FullName)
where groupsFullName.Count() > 1
// If several types with same name are declared in different namespaces
// eliminate the case where all types are declared in third-party assemblies.
let types= groupsFullName.SelectMany(g => g)
where types.Any(t => !t.IsThirdParty)
// Uncomment this line, to only gets naming collision involving
// both application and third-party types.
// && types.Any(t => t.IsThirdParty)
orderby types.Count() descending
select new { t = types.First(),
// In the 'types' column, make sure to group matched types
// by parent assemblies and parent namespaces, to get a result
// more readable.
types
}]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid prefixing type name with parent namespace name</Name>
// For example a type named "RuntimeEnvironment"
// declared in a namespace named "Foo.Runtime"
// should be named "Environment"
from n in Application.Namespaces where n.Name.Length > 0
from t in n.ChildTypes
where
!t.IsGeneratedByCompiler &&
!t.IsNested &&
t.Name.IndexOf(n.SimpleName) == 0
select new { t, namespaceName = n.SimpleName }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid naming types and namespaces with the same identifier</Name>
// Not only this can provoke compiler resolution collision,
// but also, this makes code less maintainable because
// concepts are not concisely identified.
warnif count > 0
let hashsetShortNames = Namespaces.Where(n => n.Name.Length > 0).Select(n => n.SimpleName).ToHashSet()
from t in JustMyCode.Types
where hashsetShortNames.Contains(t.Name)
select new { t, namespaces = Namespaces.Where(n => n.SimpleName == t.Name) }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Don't call your method Dispose</Name>
// Methods shouldn't be called Dispose,
// this syntax is reserved for System.IDisposable type usage.
from m in Application.Methods.WithSimpleName("Dispose")
where !m.ParentType.Implement("System.IDisposable".AllowNoMatch())
select m]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods prefixed with 'Try' should return a boolean</Name>
// and such TryXXX method can eventually have out parameters to return results.
// Get inspired from the API design of:
// System.Int32.TryParse(int,out string):bool
warnif count > 0
from m in Application.Methods where
m.SimpleNameLike("^Try") &&
m.ReturnType != null &&
m.ReturnType.FullName != "System.Boolean"
select new { m, m.ReturnType }]]></Query>
</Group>
<Group Name="Source Files Organization" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid referencing source file out of Visual Studio project directory</Name>
// A source file located outside of the VS project directory can be add through:
// > Add > Existing Items... > Add As Link
//
// Don't use this possibility to share code accross several assemblies.
// This provoques type duplication at binary level.
// Hence maintainability is degraded and subtle versioning bug can appear.
// Prefer sharing types through classic libraries.
//
// This practice can be tolerated for certain types shared accross executable assemblies.
// Such type can be responsible for particular and not shareable startup related concerns,
// such as registering custom assembly resolving handlers or
// checking the .NET Framework version before loading any custom library.
warnif count > 0
from a in Application.Assemblies
where a.VisualStudioProjectFilePath != null
let vsProjDirPathLower = a.VisualStudioProjectFilePath.ParentDirectoryPath.ToString().ToLower()
from t in a.ChildTypes
where JustMyCode.Contains(t) && t.SourceFileDeclAvailable
from decl in t.SourceDecls
let sourceFilePathLower = decl.SourceFile.FilePath.ToString().ToLower()
where sourceFilePathLower .IndexOf(vsProjDirPathLower) != 0
select new { t, sourceFilePathLower , projectFilePath = a.VisualStudioProjectFilePath.ToString() }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid duplicating a type definition across assemblies</Name>
// Prefer to factorize type definition in a library assembly.
warnif count > 0
let groups = Application.Types
.Where(t => !t.IsGeneratedByCompiler)
.GroupBy(t => t.FullName)
from @group in groups
where @group.Count() > 1
select new { t = @group.First(),
// In the 'types' column, make sure to group matched types by parent assemblies.
typesDefs = @group.ToArray()
}]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Avoid defining multiple types in a source file</Name>
warnif count > 0
// Build a lookup indexed by source files, values being a sequence of types defined in the source file.
let lookup = Application.Types.Where(t =>
t.SourceFileDeclAvailable &&
// except nested types and types generated by compilers!
!t.IsGeneratedByCompiler &&
!t.IsNested)
// It could make sense to not apply this rule for enumerations.
// && !t.IsEnumeration)
// We use multi-key, since a type can be declared in multiple source files.
.ToMultiKeyLookup(t => t.SourceDecls.Select(d => d.SourceFile))
from @group in lookup where @group.Count() > 1
let sourceFile = @group.Key
// CQLinq doesn't let indexing result with sourceFile
// so we choose a typeIndex in types,
// preferably the type that has the file name.
let typeWithSourceFileName = @group.FirstOrDefault(t => t.SimpleName == sourceFile.FileNameWithoutExtension)
let typeIndex = typeWithSourceFileName ?? @group.First()
select new { typeIndex,
types = @group as IEnumerable<IType>,
sourceFile.FilePathString }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Namespace name should correspond to file location</Name>
// For a good code organization,
// do mirror the namespaces hierarchy and the source files directories tree.
warnif count > 0
from n in Application.Namespaces
// Replace dots by spaces in namespace name
let dirCorresponding = n.Name.Replace('.', ' ')
// Look at source file decl of JustMyCode type's declared in n
from t in n.ChildTypes
where JustMyCode.Contains(t) && t.SourceFileDeclAvailable
from decl in t.SourceDecls
let sourceFilePath = decl.SourceFile.FilePath.ToString()
// Replace dots and path separators by spaces in source files names
where !sourceFilePath.Replace('.',' ').Replace('\\',' ').Contains(dirCorresponding)
select new { t, dirCorresponding , sourceFilePath } ]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types with source files stored in the same directory, should be declared in the same namespace</Name>
warnif count > 0
// Group JustMyCode types in a lookup
// where groups are keyed with directories that contain the types' source file(s).
// Note that a type can be contained in several groups
// if it is declared in several source files stored in different directories.
let lookup = JustMyCode.Types.Where(t => t.SourceFileDeclAvailable)
.ToMultiKeyLookup(
t => t.SourceDecls.Select(
decl => decl.SourceFile.FilePath.ParentDirectoryPath).Distinct()
)
from groupOfTypes in lookup
let parentNamespaces = groupOfTypes.ParentNamespaces()
// Select group of types (with source files stored in the same directory) ...
// ... but contained in several namespaces
where parentNamespaces.Count() > 1
// mainNamespaces is the namespace that contains many types
// declared in the directory groupOfTypes .key
let mainNamespace = groupOfTypes
.ToLookup(t => t.ParentNamespace)
.OrderByDescending(g => g.Count()).First().Key
// Select types with source files stored in the same directory,
// but contained in namespaces different than mainNamespace.
let typesOutOfMainNamespace = groupOfTypes
.Where(t => t.ParentNamespace != mainNamespace )
// Filter types declared on several source files that contain generated methods
// because typically such type contains one or several partial definitions generated.
// These partially generated types would be false positive for the present rule.
.Where(t => t.SourceDecls.Count() == 1 ||
t.Methods.Count(m => JustMyCode.Contains(m)) == 0)
where typesOutOfMainNamespace.Count() > 0
select new { mainNamespace,
// Typically a type in typesOutOfMainNamespace ...
// 1) ... is contained in the wrong namespace but its source file(s) is stored in the right directory.
// --> In such situation the type should be contained in mainNamespace.
// 2) ... is contained in the right namespace but its source file(s) is stored in the wrong directory
// --> In such situation the source file of type must be moved to the parent namespace directory.
// 3) ... is declared in multiple source files, stored in different directories.
// --> It would be preferable that all source files are stored in a single directory.
typesOutOfMainNamespace }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types declared in the same namespace, should have their source files stored in the same directory</Name>
warnif count > 0
from @namespace in Application.Namespaces
// Group types of @namespace in a lookup
// where groups are keyed with directories that contain the types' source file(s).
// Note that a type can be contained in several groups
// if it is declared in several source files stored in different directories.
let lookup = @namespace.ChildTypes.Where(t => t.SourceFileDeclAvailable && JustMyCode.Contains(t))
.ToMultiKeyLookup(
t => t.SourceDecls.Select(
decl => decl.SourceFile.FilePath.ParentDirectoryPath).Distinct()
)
// Are types of @namespaces declared in more than one directory?
where lookup.Count > 1
// Infer the main folder, preferably the one that has the same name as the namespace.
let dirs = lookup.Select(types => types.Key)
let mainDirNullable = dirs.Where(d => d.DirectoryName == @namespace.SimpleName).FirstOrDefault()
let mainDir = mainDirNullable ?? dirs.First()
// Types declared out of mainDir, are types in group of types declared in a directory different than mainDir!
let typesDeclaredOutOfMainDir = lookup.Where(types => types.Key != mainDir)
.SelectMany(types => types)
// Filter types declared on several source files that contain generated methods
// because typically such type contains one or several partial definitions generated.
// These partially generated types would be false positive for the present rule.
.Where(t => t.SourceDecls.Count() == 1 ||
t.Methods.Count(m => JustMyCode.Contains(m)) == 0)
where typesDeclaredOutOfMainDir.Count() > 0
select new { @namespace,
// Typically a type in typesDeclaredOutOfMainDir ...
// 1) ... is contained in the wrong namespace but its source file(s) is stored in the right directory.
// --> In such situation the type parent namespace should be the namespace corresponding to the directory.
// 2) ... is contained in the right namespace but its source file(s) is stored in the wrong directory
// --> In such situation the type source file should be moved to mainDir.
// 3) ... is declared in multiple source files, stored in different directories.
// --> It would be preferable that all source files are stored in a single directory.
typesDeclaredOutOfMainDir ,
mainDir = mainDir.ToString() }]]></Query>
</Group>
<Group Name=".NET Framework Usage" Active="True" ShownInReport="False">
<Group Name="System" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Mark ISerializable types with SerializableAttribute</Name>
from t in Application.Types where
t.IsPublic &&
!t.IsDelegate &&
t.Implement ("System.Runtime.Serialization.ISerializable".AllowNoMatch()) &&
!t.HasAttribute ("System.SerializableAttribute".AllowNoMatch())
select new { t, t.NbLinesOfCode }
// To be recognized by the CLR as serializable,
// types must be marked with the SerializableAttribute
// attribute even if the type uses a custom
// serialization routine through implementation of
// the ISerializable interface.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Mark assemblies with assembly version</Name>
warnif count > 0 from a in Application.Assemblies where
!a.HasAttribute ("System.Reflection.AssemblyVersionAttribute".AllowNoMatch())
select a
// The identity of an assembly is composed of
// the following information:
// - Assembly name
// - Version number
// - Culture
// - Public key (for strong-named assemblies).
// The .NET Framework uses the version number
// to uniquely identify an assembly, and to bind
// to types in strong-named assemblies. The
// version number is used together with version
// and publisher policy. By default, applications
// run only with the assembly version with
// which they were built.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Mark assemblies with CLSCompliant</Name>
warnif count > 0 from a in Application.Assemblies where
!a.HasAttribute ("System.CLSCompliantAttribute".AllowNoMatch())
select a
// The Common Language Specification (CLS) defines
// naming restrictions, data types, and rules to which
// assemblies must conform if they are to be used
// across programming languages. Good design dictates
// that all assemblies explicitly indicate CLS
// compliance with CLSCompliantAttribute. If the
// attribute is not present on an assembly, the
// assembly is not compliant.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Mark assemblies with ComVisible</Name>
warnif count > 0 from a in Application.Assemblies where
!a.HasAttribute ("System.Runtime.InteropServices.ComVisibleAttribute".AllowNoMatch())
select a
// The ComVisibleAttribute attribute determines
// how COM clients access managed code. Good design
// dictates that assemblies explicitly indicate
// COM visibility. COM visibility can be set for
// an entire assembly and then overridden for
// individual types and type members. If the
// attribute is not present, the contents of
// the assembly are visible to COM clients.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Mark attributes with AttributeUsageAttribute</Name>
warnif count > 0 from t in Application.Types where
t.DeriveFrom ("System.Attribute".AllowNoMatch()) &&
!t.HasAttribute ("System.AttributeUsageAttribute".AllowNoMatch())
select t
// When defining a custom attribute, mark it using
// AttributeUsageAttribute to indicate where in the
// source code the custom attribute can be applied.
// An attribute's meaning and intended usage will
// determine its valid locations in code. For example,
// if you are defining an attribute that identifies
// the person responsible for maintaining and enhancing
// each type in a library, and responsibility is
// always assigned at the type level, compilers should
// allow the attribute on classes, enumerations,
// and interfaces, but should not allow it on methods,
// events, or properties. Organizational policies and
// procedures would dictate whether the attribute
// should be allowed on assemblies.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Remove calls to GC.Collect()</Name>
warnif count > 0
let gcCollectMethods = ThirdParty.Methods.WithFullNameIn(
"System.GC.Collect()",
"System.GC.Collect(Int32)",
"System.GC.Collect(Int32,GCCollectionMode)")
from m in Application.Methods.UsingAny(gcCollectMethods)
select m
// It is preferrable to avoid calling GC.Collect()
// explicitely in order to avoid some performance pitfall.
// More in information on this here:
// http://blogs.msdn.com/ricom/archive/2004/11/29/271829.aspx]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Don't call GC.Collect() without calling GC.WaitForPendingFinalizers()</Name>
warnif count > 0
let gcCollectMethods = ThirdParty.Methods.WithFullNameIn(
"System.GC.Collect()",
"System.GC.Collect(Int32)",
"System.GC.Collect(Int32,GCCollectionMode)")
from m in Application.Methods.UsingAny(gcCollectMethods) where
!m.IsUsing ("System.GC.WaitForPendingFinalizers()".AllowNoMatch())
select new { m, m.NbLinesOfCode }
// It is preferrable to avoid calling GC.Collect()
// explicitely in order to avoid some performance
// pitfall. But if you wish to call GC.Collect(),
// you must do it this way:
// GC.Collect();
// GC.WaitForPendingFinalizers();
// GC.Collect();
// To make sure that finalizer got executed, and
// object with finalizer got cleaned properly.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Enum Storage should be Int32</Name>
warnif count > 0 from f in Fields where
f.Name == @"value__" &&
!f.FieldTypeIs ("System.Int32".AllowNoMatch()) &&
!f.IsThirdParty
select new { f, f.SizeOfInst, f.FieldType }
// An enumeration is a value type that defines
// a set of related named constants. By default,
// the System.Int32 data type is used to store
// the constant value. Even though you can change
// this underlying type, it is not necessary or
// recommended for most scenarios. Note that there
// is no significant performance gain in using
// a data type smaller than Int32. If you cannot
// use the default data type, you should use one
// of the CLS-compliant integral types, Byte,
// Int16, Int32, or Int64, to ensure that all of
// the enumeration's values are representable in
// CLS-compliant programming languages.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Do not raise too general exception types</Name>
warnif count > 0 from m in Application.Methods where
// Test for non-constructor, else this rule
// would warn on ctor of classes that derive
// from these exception types.
!m.IsConstructor && (
m.CreateA("System.Exception".AllowNoMatch()) ||
m.CreateA("System.ApplicationException".AllowNoMatch()) ||
m.CreateA("System.SystemException".AllowNoMatch()) )
select m
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Do not raise reserved exception types</Name>
warnif count > 0
let reservedExceptions = ThirdParty.Types.WithFullNameIn(
"System.ExecutionEngineException",
"System.IndexOutOfRangeException",
"System.NullReferenceException",
"System.OutOfMemoryException",
"System.StackOverflowException",
"System.InvalidProgramException",
"System.AccessViolationException",
"System.CannotUnloadAppDomainException",
"System.BadImageFormatException",
"System.DataMisalignedException")
from m in Application.Methods.ThatCreateAny(reservedExceptions)
let reservedExceptionsCreated = reservedExceptions.Where(t => m.IsUsing(t))
select new { m, reservedExceptionsCreated }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Use integral or string argument for indexers</Name>
from m in Application.Methods where
m.IsIndexerGetter &&
!( (m.Name == @"get_Item(String)") ||
m.NameLike (@"get_Item\(Int") ||
m.NameLike (@"get_Item\(Byte") ||
m.NameLike (@"get_Item\(SByte") )
select m
// Indexers, that is, indexed properties,
// should use integer or string types for the index.
// These types are typically used for indexing
// data structures and increase the usability of
// the library. Use of the Object type should be
// restricted to those cases where the specific
// integer or string type cannot be specified at
// design time. If the design requires other
// types for the index, reconsider whether the
// type represents a logical data store. If it
// does not represent a logical data store,
// use a method.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Uri fields should be of type System.Uri</Name>
warnif count > 0 from f in Application.Fields where
(f.NameLike (@"Uri$") ||
f.NameLike (@"Url$")) &&
!f.FieldTypeIs ("System.Uri".AllowNoMatch())
select new { f, f.FieldType }
// A field which name end with 'Uri' is deemed
// as representing a uri. Such field should be of
// type System.Uri.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types should not extend System.ApplicationException</Name>
warnif count > 0 from t in Application.Types where
t.DeriveFrom("System.ApplicationException".AllowNoMatch())
select t
// For .NET Framework version 1, it was
// recommended to derive new exceptions from
// ApplicationException. The recommendation has
// changed and new exceptions should derive
// from System.Exception or one of its
// subclasses in the System namespace.]]></Query>
</Group>
<Group Name="System.Collection" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Collection properties should be read only</Name>
// A writable collection property allows a user to replace the collection with
// a completely different collection. A read-only property stops the collection
// from being replaced but still allows the individual members to be set.
// If replacing the collection is a goal, the preferred design pattern is to
// include a method to remove all the elements from the collection
// (with a call to the ICollection.Clear() method) and then re-populate the collection.
warnif count > 0
// First find collectionTypes
let collectionInterfaces = ThirdParty.Types.WithFullNameIn(
"System.Collections.ICollection", "System.Collections.Generic.ICollection<T>")
where collectionInterfaces.Count() > 0
let collectionTypes = Types.ThatImplementAny(collectionInterfaces)
.Union(collectionInterfaces).ToHashSet()
// Then find all property setters that have an associated
// getter that returns a collection type.
from propGetter in Application.Methods.Where(
m => m.IsPropertyGetter &&
m.ReturnType != null &&
collectionTypes.Contains(m.ReturnType))
let propSetter = propGetter.ParentType.Methods.WithSimpleName(
propGetter.SimpleName.Replace("get_","set_"))
.SingleOrDefault()
where propSetter != null &&
!propSetter.IsPrivate
select new { propSetter, propGetter.ReturnType }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Don't use .NET 1.x HashTable and ArrayList</Name>
warnif count > 0
let forbiddenTypes = ThirdParty.Types.WithFullNameIn("System.Collections.HashTable", "System.Collections.ArrayList")
where forbiddenTypes.Count() > 0
from m in Application.Methods.ThatCreateAny(forbiddenTypes)
select m
// You can be forced to use HashTable or ArrayList
// because you are using third party code that requires
// working with these classes or because you are
// coding with .NET 1.x.]]></Query>
<Query Active="False" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Caution with List.Contains()</Name>
let containsMethods = ThirdParty.Methods.WithFullNameIn(
"System.Collections.Generic.List<T>.Contains(T)",
"System.Collections.Generic.IList<T>.Contains(T)",
"System.Collections.ArrayList.Contains(Object)")
from m in Application.Methods.UsingAny(containsMethods)
select m
// The cost of checking if a list contains an
// object is proportional to the size of the list
// (O(N) operation). For large lists and/or frequent
// calls to Contains(), prefer using the
// System.Collections.Generic.HashSet<T> class
// where calls to Contains() takes a constant
// time (O(0) operation).]]></Query>
<Query Active="False" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Prefer return collection abstraction instead of implementation</Name>
let implTypes = ThirdParty.Types.WithFullNameIn(
"System.Collections.Generic.List<T>",
"System.Collections.Generic.HashSet<T>",
"System.Collections.Generic.Dictionary<TKey,TValue>")
from m in Application.Methods.WithReturnTypeIn(implTypes)
select new { m, m.ReturnType }
// Most of the time, clients of a method doesn't
// need to know the exact implementation of the
// collection returned. It is preferrable to return
// a collection interface such as IList<T>,
// ICollection<T> or IEnumerable<T>.]]></Query>
</Group>
<Group Name="System.Runtime.InteropServices" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>P/Invokes should be static and not be visible</Name>
warnif count > 0 from m in Application.Methods where
!m.IsThirdParty &&
(m.HasAttribute ("System.Runtime.InteropServices.DllImportAttribute".AllowNoMatch())) &&
( m.IsPublic ||
!m.IsStatic)
select new { m, m.Visibility, m.IsStatic }
// Methods marked with the DllImportAttribute
// attribute (or methods defined using the
// Declare keyword in Visual Basic) use
// Platform Invocation Services to access unmanaged
// code. Such methods should not be exposed. Keeping
// these methods private or internal ensures
// that your library cannot be used to breach
// security by allowing callers access to
// unmanaged APIs they could not call otherwise.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Move P/Invokes to NativeMethods class</Name>
warnif count > 0 from m in Application.Methods where
m.HasAttribute ("System.Runtime.InteropServices.DllImportAttribute".AllowNoMatch()) &&
m.ParentType.Name != "NativeMethods"
select m
// Platform Invocation methods, such as those marked
// with the System.Runtime.InteropServices.DllImportAttribute
// attribute, or methods defined by using the Declare
// keyword in Visual Basic, access unmanaged code.
// These methods should be in one of the following classes:
//
// - NativeMethods - This class does not suppress stack
// walks for unmanaged code permission.
// (System.Security.SuppressUnmanagedCodeSecurityAttribute
// must not be applied to this class.)
// This class is for methods that can be used
// anywhere because a stack walk will be performed.
//
// - SafeNativeMethods - This class suppresses
// stack walks for unmanaged code permission.
// (System.Security.SuppressUnmanagedCodeSecurityAttribute
// is applied to this class.)
// This class is for methods that are safe
// for anyone to call. Callers of these methods
// are not required to do a full security review
// to ensure that the usage is secure because
// the methods are harmless for any caller.
//
// - UnsafeNativeMethods - This class suppresses
// stack walks for unmanaged code permission.
// (System.Security.SuppressUnmanagedCodeSecurityAttribute
// is applied to this class.) This class is for
// methods that are potentially dangerous. Any
// caller of these methods must do a full security
// review to ensure that the usage is secure because
// no stack walk will be performed.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>NativeMethods class should be static and internal</Name>
warnif count > 0 from t in Application.Types.WithNameIn(
@"NativeMethods", "SafeNativeMethods", "UnsafeNativeMethods") where
t.IsPublic || !t.IsStatic
select new { t, t.Visibility, t.IsStatic }
// Native Methods' classes are declared as internal
// (Friend, in Visual Basic) and static.
]]></Query>
</Group>
<Group Name="System.Threading" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Method non-synchronized that read mutable states</Name>
from m in Application.Methods where
(m.ReadsMutableObjectState || m.ReadsMutableTypeState) &&
!m.IsUsing ("System.Threading.Monitor".AllowNoMatch()) &&
!m.IsUsing ("System.Threading.ReaderWriterLock".AllowNoMatch())
select new { m, mutableFieldsUsed = m.FieldsUsed.Where(f => !f.IsImmutable) }
// Mutable object states are instance fields that
// can be modifed throught the lifetime of the object.
// Mutable type states are static fields that can be
// modifed throught the lifetime of the program.
// This query lists methods that read mutable state
// without synchronizing access. In the case of
// multi-threaded program, doing so can lead to
// state corruption.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Don't create threads explicitely</Name>
warnif count > 0 from m in Application.Methods where
m.CreateA ("System.Threading.Thread".AllowNoMatch())
select m
// Prefer using the thread pool instead of
// creating manually your own thread.
// Threads are costly objects.
// They take approximately 200,000 cycles to
// create and about 100,000 cycles to destroy.
// By default they reserve 1 megabyte of virtual
// memory for its stack and use 2,000-8,000
// cycles for each context switch.
// As a consequence, it is preferrable to let
// the thread pool recycle threads.
// Creating custom thread can also be the
// sign of flawed design, where tasks and
// threads have affinity. It is preferrable
// to code tasks that can be ran on any thread.]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Don't use dangerous threading methods</Name>
warnif count > 0
let wrongMethods = ThirdParty.Methods.WithFullNameIn(
// Usage of Thread.Abort() is dangerous.
// More information on this here:
// http://www.interact-sw.co.uk/iangblog/2004/11/12/cancellation
"System.Threading.Thread.Abort()",
"System.Threading.Thread.Abort(Object)",
// Usage of Thread.Sleep() is a sign of
// flawed design. More information on this here:
// http://msmvps.com/blogs/peterritchie/archive/2007/04/26/thread-sleep-is-a-sign-of-a-poorly-designed-program.aspx
"System.Threading.Thread.Sleep(Int32)",
// Suspend() and Resume() are dangerous threading methods, marked as obsolete.
// More information on workaround here:
// http://stackoverflow.com/questions/382173/what-are-alternative-ways-to-suspend-and-resume-a-thread
"System.Threading.Thread.Suspend()",
"System.Threading.Thread.Resume()"
)
from m in Application.Methods.UsingAny(wrongMethods)
select new { m, calls = m.MethodsCalled.Intersect(wrongMethods) }
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Monitor TryEnter/Exit must be both called within the same method</Name>
// Else you expose yourself to complex error-prone scenarios.
warnif count > 0
let enterMethods = ThirdParty.Methods.WithFullNameWildcardMatchIn(
"System.Threading.Monitor.Enter(*",
"System.Threading.Monitor.TryEnter(*")
from m in Application.Methods.UsingAny(enterMethods) where
!m.IsUsing ("System.Threading.Monitor.Exit(Object)".AllowNoMatch())
select new { m, enterMethodsCalled = m.MethodsCalled.Intersect(enterMethods) }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>ReaderWriterLock Acquire[Reader/Writer]Lock/ReleaseLock must be both called within the same method</Name>
// Else you expose yourself to complex error-prone scenarios.
warnif count > 0
let acquireLockMethods = ThirdParty.Methods.WithFullNameWildcardMatch(
"System.Threading.ReaderWriterLock.AcquireReaderLock(*")
from m in Application.Methods.UsingAny(acquireLockMethods) where
!m.IsUsing ("System.Threading.ReaderWriterLock.ReleaseReaderLock()".AllowNoMatch()) &&
!m.IsUsing ("System.Threading.ReaderWriterLock.ReleaseLock()".AllowNoMatch())
select new { m, acquireLockMethods = m.MethodsCalled.Intersect(acquireLockMethods) }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="True"><![CDATA[// <Name>Don't tag instance fields with ThreadStaticAttribute</Name>
// The ThreadStaticAttribute is designed to only works when it tags static fields.
warnif count > 0
from f in Application.Fields
where !f.IsStatic &&
f.HasAttribute ("System.ThreadStaticAttribute".AllowNoMatch())
select new { f, f.SizeOfInst }]]></Query>
</Group>
<Group Name="System.Xml" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Method should not return concrete XmlNode</Name>
warnif count > 0
let concreteXmlTypes = ThirdParty.Types.WithFullNameIn(
"System.Xml.XmlDocument",
"System.Xml.XmlAttribute",
"System.Xml.XmlDocumentFragment",
"System.Xml.XmlEntity",
"System.Xml.XmlLinkedNode",
"System.Xml.XmlNotation",
"System.Xml.XmlNode")
from m in Application.Methods.WithReturnTypeIn(concreteXmlTypes)
select new { m, m.ReturnType }
// The class System.Xml.XmlNode implements the interface
// System.Xml.Xpath.IXPathNavigable. It is preferrable
// to return this interface instead of a concrete class.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types should not extend System.Xml.XmlDocument</Name>
warnif count > 0 from t in Application.Types where
t.DeriveFrom("System.Xml.XmlDocument".AllowNoMatch())
select t
// Do not create a subclass of XmlDocument if you want
// to create an XML view of an underlying object
// model or data source.]]></Query>
</Group>
<Group Name="System.Globalization" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Float and Date Parsing must be culture aware</Name>
warnif count > 0
from m in ThirdParty.Types.WithFullNameIn(
"System.DateTime",
"System.Single",
"System.Double",
"System.Decimal").ChildMethods()
where m.NbParameters > 0 &&
(m.SimpleName == "Parse" ||
m.SimpleName == "ToString") &&
!m.Name.Contains("IFormatProvider")
select new { m, m.MethodsCallingMe }]]></Query>
</Group>
<Group Name="Microsoft.Contracts" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Public methods returning a reference needs a contract to ensure that a non-null reference is returned</Name>
// Contracts are useful to decrease ambiguity between callers and callees.
// Not ensuring that a reference returned is not-null leaves ambiguity for the caller.
// Contract.Ensures(Contract.Result<***ReturnType***>() != null, "returned object is not null");
// We advise to use the {TryXXX} pattern exposed in the System.Int32.TryParse() method for example
// if you need to express that a method might return a null reference.
warnif count > 0
from a in Application.Assemblies where a.IsUsing ("Microsoft.Contracts".AllowNoMatch().MatchAssembly())
let ensureMethod = a.ChildMethods.WithFullName("System.Diagnostics.Contracts.__ContractsRuntime.Ensures(Boolean,String,String)").SingleOrDefault()
where ensureMethod != null
from m in a.ChildMethods where
m.IsPubliclyVisible &&
!m.IsAbstract &&
m.ReturnType != null &&
// Identify that the return type is a reference type
(m.ReturnType.IsClass || m.ReturnType.IsInterface) &&
!m.IsUsing(ensureMethod )
select new { m, ReturnTypeReference = m.ReturnType }]]></Query>
</Group>
<Group Name="Third-Party Code Elements Used" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Third-Party Assemblies Used</Name>
ThirdParty.Assemblies.Select(a => a)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Third-Party Namespaces Used</Name>
ThirdParty.Namespaces.Select(n => n)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Third-Party Types Used</Name>
ThirdParty.Types.Select(t => t)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Third-Party Methods Used</Name>
ThirdParty.Methods.Select(m => m)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Third-Party Fields Used</Name>
ThirdParty.Fields.Select(f => f)]]></Query>
</Group>
</Group>
<Group Name="Trend Metrics" Active="True" ShownInReport="False">
<Group Name="Code Size" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Lines of Code" Unit="LoC" />
Application.Assemblies.Sum(a => a.NbLinesOfCode)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Lines of Code (JustMyCode)" Unit="LoC" />
JustMyCode.Methods.Sum(m => m.NbLinesOfCode)
// JustMyCode is defined by code queries prefixed with 'notmycode'
// in the group 'Defining JustMyCode'.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Lines of Code (NotMyCode)" Unit="LoC" />
Application.Methods.Where(m => !JustMyCode.Contains(m))
.Sum(m => m.NbLinesOfCode)
// JustMyCode is defined by code queries prefixed with 'notmycode'
// in the group 'Defining JustMyCode'.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Lines of Code Added since the Baseline" Unit="LoC" />
( from a in Application.Assemblies
let nbLocAdded = !a.IsPresentInBothBuilds()
? a.NbLinesOfCode
: (a.NbLinesOfCode != null && a.OlderVersion().NbLinesOfCode != null)
? a.NbLinesOfCode - (int)a.OlderVersion().NbLinesOfCode
: 0
select nbLocAdded)
.Sum(loc => loc)
// A value is computed by this Trend Metric query
// only if a Baseline for Comparison is provided.
// See Project Properties > Analysis > Baseline for Comparison
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Source Files" Unit="Source Files" />
Application.Assemblies.SelectMany(
a => a.SourceDecls.Select(sd => sd.SourceFile.FilePathString.ToLower()))
.Distinct()
.Count()
// If a value 0 is obtained, it means that at analysis time,
// assemblies PDB files were not available.
// http://www.ndepend.com/Doc_CI_Inputs.aspx
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# IL Instructions" Unit="IL Instructions" />
Application.Assemblies.Sum(a => a.NbILInstructions)
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# IL Instructions (NotMyCode)" Unit="IL Instructions" />
Application.Methods.Where(m => !JustMyCode.Contains(m))
.Sum(m => m.NbILInstructions)
// JustMyCode is defined by code queries prefixed with 'notmycode'
// in the group 'Defining JustMyCode'.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Lines of Comments" Unit="Lines" />
Application.Assemblies.Sum(a => a.NbLinesOfComment)
// So far comments are only extracted from C# source code.
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Assemblies" Unit="Assemblies" />
Application.Assemblies.Count()
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Namespaces" Unit="Namespaces" />
Application.Namespaces.Count()]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Types" Unit="Types" />
Application.Types.Count()]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Public Types" Unit="Types" />
Application.Types.Where(t => t.IsPubliclyVisible).Count()]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Classes" Unit="Types" />
Application.Types.Count(t => t.IsClass && !t.IsGeneratedByCompiler)
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Abstract Classes" Unit="Types" />
Application.Types.Count(t => t.IsClass && t.IsAbstract)
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Interfaces" Unit="Types" />
Application.Types.Count(t => t.IsInterface)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Structures" Unit="Types" />
Application.Types.Count(t => t.IsStructure)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Methods" Unit="Methods" />
Application.Methods.Count(m => !m.IsGeneratedByCompiler)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Abstract Methods" Unit="Methods" />
Application.Methods.Count(m => m.IsAbstract)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Concrete Methods" Unit="Methods" />
Application.Methods.Count(m => !m.IsAbstract && !m.IsGeneratedByCompiler)
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Fields" Unit="Fields" />
Application.Fields.Count(f =>
!f.IsEnumValue &&
!f.IsGeneratedByCompiler &&
!f.IsLiteral &&
!f.ParentType.IsEnumeration)
]]></Query>
</Group>
<Group Name="Maximum and Average" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Max # Lines of Code for Methods (JustMyCode)" Unit="LoC" />
JustMyCode.Methods
.Max(m => m.NbLinesOfCode)
.ToEnumerable().Sum(loc => loc)
// Here is the code query to get the (JustMyCode) method with largest # Lines of Code
// JustMyCode.Methods.OrderByDescending(m => m.NbLinesOfCode).Take(1).Select(m => new {m, m.NbLinesOfCode})
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Average # Lines of Code for Methods" Unit="LoC" />
Application.Methods.Where(m => m.NbLinesOfCode > 0)
.Average(m => m.NbLinesOfCode)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Average # Lines of Code for Methods with at least 3 Lines of Code" Unit="LoC" />
Application.Methods.Where(m => m.NbLinesOfCode >= 3)
.Average(m => m.NbLinesOfCode)
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Max # Lines of Code for Types (JustMyCode)" Unit="LoC" />
JustMyCode.Types
.Max(t => t.NbLinesOfCode)
.ToEnumerable().Sum(loc => loc)
// Here is the code query to get the (JustMyCode) type with largest # Lines of Code
// JustMyCode.Types.OrderByDescending(t => t.NbLinesOfCode).Take(1).Select(t => new {t, t.NbLinesOfCode})
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Average # Lines of Code for Types" Unit="LoC" />
Application.Types.Where(t => t.NbLinesOfCode > 0)
.Average(t => t.NbLinesOfCode)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Max Cyclomatic Complexity for Methods" Unit="Paths" />
Application.Methods
.Max(m => m.CyclomaticComplexity)
.ToEnumerable().Sum(loc => loc)
// Here is the code query to get the most complex method, according to Cyclomatic Complexity
// Application.Methods.OrderByDescending(m => m.CyclomaticComplexity).Take(1).Select(m => new {m, m.CyclomaticComplexity})
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Average Cyclomatic Complexity for Methods" Unit="Paths" />
Application.Methods.Where(m => m.NbLinesOfCode> 0)
.Average(m => m.CyclomaticComplexity)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Max IL Cyclomatic Complexity for Methods" Unit="Paths" />
Application.Methods
.Max(m => m.ILCyclomaticComplexity)
.ToEnumerable().Sum(loc => loc)
// Here is the code query to get the most complex method, according to Cyclomatic Complexity computed from IL code.
// Application.Methods.OrderByDescending(m => m.ILCyclomaticComplexity).Take(1).Select(m => new {m, m.CyclomaticComplexity})
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Average IL Cyclomatic Complexity for Methods" Unit="Paths" />
Application.Methods.Where(m => m.NbILInstructions> 0)
.Average(m => m.ILCyclomaticComplexity)
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Max IL Nesting Depth for Methods" Unit="Scopes" />
Application.Methods
.Max(m => m.ILNestingDepth)
.ToEnumerable().Sum(loc => loc)
// Here is the code query to get the method with highest ILNestingDepth.
// Application.Methods.OrderByDescending(m => m.ILNestingDepth).Take(1).Select(m => new {m, m.ILNestingDepth})
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Average IL Nesting Depth for Methods" Unit="Scopes" />
Application.Methods.Where(m => m.NbILInstructions> 0)
.Average(m => m.ILNestingDepth)
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Max # of Methods for Types" Unit="Methods" />
Application.Types
.Max(t => t.NbMethods)
.ToEnumerable().Sum(loc => loc)
// Here is the code query to get the (JustMyCode) type with largest # of Methods
// JustMyCode.Types.OrderByDescending(t => t.NbMethods).Take(1).Select(t => new {t, t.Methods})
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Average # Methods for Types" Unit="Methods" />
Application.Types.Average(t => t.NbMethods)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Max # of Methods for Interfaces" Unit="Methods" />
Application.Types.Where(t => t.IsInterface)
.Max(t => t.NbMethods)
.ToEnumerable().Sum(loc => loc)
// Here is the code query to get the (JustMyCode) type with largest # of Methods
// JustMyCode.Types.OrderByDescending(t => t.NbMethods).Take(1).Select(t => new {t, t.Methods})]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Average # Methods for Interfaces" Unit="Methods" />
JustMyCode.Types.Where(t => t.IsInterface)
.Average(t => t.NbMethods)
]]></Query>
</Group>
<Group Name="Code Coverage" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Percentage Code Coverage" Unit="%" />
((float)Application.Assemblies.Sum(a => a.NbLinesOfCodeCovered) /
Application.Assemblies.Sum(a => a.NbLinesOfCode)
* 100f)
.ToEnumerable().Sum()
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Lines of Code Covered" Unit="LoC" />
Application.Assemblies.Sum(a => a.NbLinesOfCodeCovered)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Lines of Code Not Covered" Unit="LoC" />
Application.Assemblies.Sum(a => a.NbLinesOfCodeNotCovered)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Lines of Code in Types 100% Covered" Unit="LoC" />
Application.Types.Where(t => t.PercentageCoverage == 100)
.Sum(t => t.NbLinesOfCodeCovered)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Lines of Code in Methods 100% Covered" Unit="LoC" />
Application.Methods.Where(m => m.PercentageCoverage == 100)
.Sum(m => m.NbLinesOfCodeCovered)]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Max C.R.A.P Score" />
// Change Risk Analyzer and Predictor (i.e. CRAP) code metric
// This code metric helps in pinpointing overly complex and untested code.
// Reference: http://www.artima.com/weblogs/viewpost.jsp?thread=215899
// Formula: CRAP(m) = comp(m)^2 * (1 - cov(m)/100)^3 + comp(m)
(from m in JustMyCode.Methods
// Don't match too short methods
where m.NbLinesOfCode > 10
let CC = m.CyclomaticComplexity
let uncov = (100 - m.PercentageCoverage) / 100f
let CRAP = (CC * CC * uncov * uncov * uncov) + CC
where CRAP != null && CRAP > 30 select CRAP)
.Max(CRAP => CRAP)
// To list methods with highest C.R.A.P scores, please refer to the default rule:
// Test and Code Coverage > C.R.A.P method code metric
]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="Average C.R.A.P Score" />
// Change Risk Analyzer and Predictor (i.e. CRAP) code metric
// This code metric helps in pinpointing overly complex and untested code.
// Reference: http://www.artima.com/weblogs/viewpost.jsp?thread=215899
// Formula: CRAP(m) = comp(m)^2 * (1 - cov(m)/100)^3 + comp(m)
(from m in JustMyCode.Methods
// Don't match too short methods
where m.NbLinesOfCode > 10
let CC = m.CyclomaticComplexity
let uncov = (100 - m.PercentageCoverage) / 100f
let CRAP = (CC * CC * uncov * uncov * uncov) + CC
where CRAP != null && CRAP > 30 select CRAP)
.Average(CRAP => CRAP)
// To list methods with highest C.R.A.P scores, please refer to the default rule:
// Test and Code Coverage > C.R.A.P method code metric
]]></Query>
</Group>
<Group Name="Third-Party Usage" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Third-Party Assemblies Used" Unit="Assemblies" />
ThirdParty.Assemblies.Count()]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Third-Party Namespaces Used" Unit="Namespaces" />
ThirdParty.Namespaces.Count()]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Third-Party Types Used" Unit="Types" />
ThirdParty.Types.Count()]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Third-Party Methods Used" Unit="Methods" />
ThirdParty.Methods.Count()]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <TrendMetric Name="# Third-Party Fields Used" Unit="Fields" />
ThirdParty.Fields.Count()]]></Query>
</Group>
</Group>
<Group Name="Defining JustMyCode" Active="True" ShownInReport="False">
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Discard generated Assemblies from JustMyCode</Name>
// --- Make sure to make this query richer to discard generated assemblies from NDepend rules results---
notmycode
from a in Application.Assemblies where
// Assemblies generated for Xsl IL compilation for example are tagged with this attribute
a.HasAttribute ("System.CodeDom.Compiler.GeneratedCodeAttribute".AllowNoMatch())
select new { a, a.NbILInstructions }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Discard generated Types from JustMyCode</Name>
// --- Make sure to make this query richer to discard generated types from NDepend rules results ---
notmycode
from t in Application.Types where
// Resources, Settings, or typed DataSet generated types for example, are tagged with this attribute
t.HasAttribute ("System.CodeDom.Compiler.GeneratedCodeAttribute".AllowNoMatch()) ||
// This attributes identifies a type or member that is not part of the user code for an application.
t.HasAttribute ("System.Diagnostics.DebuggerNonUserCodeAttribute".AllowNoMatch()) ||
// Delegate types are always generated
t.IsDelegate ||
// Discard ASP.NET page types generated by aspnet_compiler.exe
// See: http://www.ndepend.com/FAQ.aspx#ASPNET
t.ParentNamespace.Name.EqualsAny("ASP", "__ASP") ||
// Discard generated type ContractException
t.Name == "__ContractsRuntime+ContractException" ||
t.FullName == "System.Diagnostics.Contracts.RuntimeContractsAttribute" ||
t.FullName == "System.Diagnostics.Contracts.__ContractsRuntime" ||
// Discard all types declared in a folder path containing the word "generated"
(t.SourceFileDeclAvailable &&
t.SourceDecls.All(s => s.SourceFile.FilePath.ParentDirectoryPath.ToString().ToLower().Contains("generated")))
select new { t, t.NbLinesOfCode }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Discard generated and designer Methods from JustMyCode</Name>
// --- Make sure to make this query richer to discard generated methods from NDepend rules results ---
notmycode
//
// First define source files paths to discard
//
from a in Application.Assemblies
where a.SourceFileDeclAvailable
let asmSourceFilesPaths = a.SourceDecls.Select(s => s.SourceFile.FilePath)
let sourceFilesPathsToDiscard = (
from filePath in asmSourceFilesPaths
let filePathLower= filePath.ToString().ToLower()
where
filePathLower.EndsWithAny(
".g.cs", // Popular pattern to name generated files.
".g.vb",
".xaml", // notmycode WPF xaml code
".designer.cs", // notmycode C# Windows Forms designer code
".designer.vb") // notmycode VB.NET Windows Forms designer code
||
// notmycode methods in source files in a directory containing generated
filePathLower.Contains("generated")
select filePath
).ToHashSet()
//
// Second: discard methods in sourceFilesPathsToDiscard
//
from m in a.ChildMethods
where (m.SourceFileDeclAvailable &&
sourceFilesPathsToDiscard.Contains(m.SourceDecls.First().SourceFile.FilePath)) ||
// Generated methods might be tagged with this attribute
m.HasAttribute ("System.CodeDom.Compiler.GeneratedCodeAttribute".AllowNoMatch()) ||
// This attributes identifies a type or member that is not part of the user code for an application.
m.HasAttribute ("System.Diagnostics.DebuggerNonUserCodeAttribute".AllowNoMatch())
select new { m, m.NbLinesOfCode }]]></Query>
<Query Active="True" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Discard generated Fields from JustMyCode</Name>
// --- Make sure to make this query richer to discard generated fields from NDepend rules results ---
notmycode
from f in Application.Fields where
f.HasAttribute ("System.CodeDom.Compiler.GeneratedCodeAttribute".AllowNoMatch()) ||
// Eliminate "components" generated in Windows Form Conrol context
f.Name == "components" && f.ParentType.DeriveFrom("System.Windows.Forms.Control".AllowNoMatch())
select f]]></Query>
</Group>
<Group Name="Statistics" Active="False" ShownInReport="False">
<Query Active="True" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Most used types (Rank)</Name>
(from t in Application.Types orderby t.Rank descending
select new { t, t.Rank }).Take(50)
// TypeRank values are computed by applying
// the Google PageRank algorithm on the
// graph of types' dependencies. Types with
// high Rank are the most used ones.
// See the definition of the TypeRank metric here:
// http://www.ndepend.com/Metrics.aspx#TypeRank]]></Query>
<Query Active="True" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Most used methods (Rank)</Name>
(from m in Application.Methods orderby m.Rank descending
select new { m, m.Rank }).Take(50)
// MethodRank values are computed by applying
// the Google PageRank algorithm on the graph of
// methods' dependencies. Methods with high Rank
// are the most used ones. See the definition of
// the MethodRank metric here:
// http://www.ndepend.com/Metrics.aspx#MethodRank]]></Query>
<Query Active="True" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Most used namespaces (#NamespacesUsingMe )</Name>
(from n in Namespaces orderby n.NbNamespacesUsingMe descending
select new { n, n.NamespacesUsingMe }).Take(50)]]></Query>
<Query Active="True" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Most used types (#TypesUsingMe )</Name>
(from t in Types orderby t.NbTypesUsingMe descending
select new { t, t.TypesUsingMe }).Take(50)]]></Query>
<Query Active="True" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Most used methods (#MethodsCallingMe )</Name>
(from m in Methods orderby m.NbMethodsCallingMe descending
select new { m, m.MethodsCallingMe }).Take(50)]]></Query>
<Query Active="True" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Namespaces that use many other namespaces (#NamespacesUsed )</Name>
(from n in Application.Namespaces orderby n.NbNamespacesUsed descending
select new { n, n.NamespacesUsed }).Take(50)]]></Query>
<Query Active="True" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Types that use many other types (#TypesUsed )</Name>
(from t in Application.Types orderby t.NbTypesUsed descending
select new { t, t.TypesUsed }).Take(50)]]></Query>
<Query Active="True" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Methods that use many other methods (#MethodsCalled )</Name>
(from m in Application.Methods orderby m.NbMethodsCalled descending
select new { m, m.MethodsCalled }).Take(50)]]></Query>
<Query Active="True" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>High-level to low-level assemblies (Level)</Name>
from a in Application.Assemblies orderby a.Level descending
select new { a, a.Level }
// Classify assemblies by their Level values.
// See the definition of the AssemblyLevel metric here:
// http://www.ndepend.com/Metrics.aspx#Level]]></Query>
<Query Active="True" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>High-level to low-level namespaces (Level)</Name>
from n in Application.Namespaces orderby n.Level descending
select new { n, n.Level }
// Classify namespaces by their Level values.
// See the definition of the NamespaceLevel metric here:
// http://www.ndepend.com/Metrics.aspx#Level]]></Query>
<Query Active="True" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>High-level to low-level types (Level)</Name>
from t in Application.Types orderby t.Level descending
select new { t, t.Level }
// Classify types by their Level values.
// See the definition of the TypeLevel metric here:
// http://www.ndepend.com/Metrics.aspx#Level]]></Query>
<Query Active="True" DisplayList="False" DisplayStat="False" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>High-level to low-level methods (Level)</Name>
from m in Application.Methods orderby m.Level descending
select new { m, m.Level }
// Classify methods by their Level values.
// See the definition of the MethodLevel metric here:
// http://www.ndepend.com/Metrics.aspx#Level]]></Query>
</Group>
<Group Name="Samples of Custom rules" Active="False" ShownInReport="False">
<Query Active="False" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Check that the assembly Asm1 is not using the assembly Asm2</Name>
warnif count > 0 from a in Application.Assemblies where
a.IsUsing ("Asm2".AllowNoMatch().MatchAssembly()) &&
(a.Name == @"Asm1")
select a
]]></Query>
<Query Active="False" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Check that the namespace N1.N2 is not using the namespace N3.N4.N5</Name>
warnif count > 0 from n in Application.Namespaces where
n.IsUsing ("N3.N4.N5".AllowNoMatch().MatchAssembly()) &&
(n.Name == @"N1.N2")
select n
]]></Query>
<Query Active="False" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Check that the assembly Asm1 is only using the assemblies Asm2, Asm3 or mscorlib</Name>
warnif count > 0 from a in Application.Assemblies where
( !a.IsUsing ("Asm2".AllowNoMatch().MatchAssembly()) ||
!a.IsUsing ("Asm3".AllowNoMatch().MatchAssembly()) ||
!a.IsUsing ("mscorlib".MatchAssembly()) ||
a.AssembliesUsed.Count() != 3) // Must not be used more than 3 assemblies
&&
(a.Name == @"Asm1")
select new { a, a.AssembliesUsed }
]]></Query>
<Query Active="False" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Check that the namespace N1.N2 is only using the namespaces N3.N4, N5 or System</Name>
warnif count > 0 from n in Application.Namespaces where
( !n.IsUsing("N3.N4".AllowNoMatch().MatchNamespace()) ||
!n.IsUsing("N5".AllowNoMatch().MatchNamespace()) ||
!n.IsUsing("System".MatchNamespace()) ||
n.NamespacesUsed.Count() != 3) // Must not be used more than 3 assemblies
// AsmCe = Efferent Coupling for assembly
&&
(n.Name == @"N1.N2")
select new { n, n.NamespacesUsed }
]]></Query>
<Query Active="False" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Check that AsmDrawing is the only assembly that is using System.Drawing</Name>
warnif count> 0 from a in Application.Assemblies where
a.IsUsing ("System.Drawing".AllowNoMatch().MatchAssembly()) &&
!(a.Name == @"AsmDrawing")
select a
]]></Query>
<Query Active="False" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Check that only 3 assemblies are using System.Drawing</Name>
warnif count != 3 from a in Application.Assemblies where
a.IsUsing ("System.Drawing".AllowNoMatch().MatchAssembly())
select a
]]></Query>
<Query Active="False" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Check that all methods that call Foo.Fct1() also call Foo.Fct2(Int32)</Name>
warnif count > 0 from m in Application.Methods where
m.IsUsing ("Foo.Fct1()".AllowNoMatch()) &&
!m.IsUsing ("Foo.Fct2(Int32)".AllowNoMatch())
select m
]]></Query>
<Query Active="False" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Check that all types that derive from Foo, also implement IFoo</Name>
warnif count > 0 from t in Application.Types where
t.DeriveFrom ("Foo".AllowNoMatch().MatchType()) &&
!t.Implement ("IFoo".AllowNoMatch().MatchType())
select t
]]></Query>
<Query Active="False" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Check that all types that has the attribute FooAttribute are declared in the namespace N1.N2*</Name>
warnif count > 0 from t in
Application.Namespaces.WithNameWildcardMatchNotIn("N1.N2*").ChildTypes()
where
t.HasAttribute ("FooAttribute".AllowNoMatch())
select t]]></Query>
<Query Active="False" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Check that all synchronization objects are only used from the namespaces under MyNamespace.Sync</Name>
warnif count > 0 from n in Application.Namespaces
where
(n.IsUsing ("System.Threading.Monitor".AllowNoMatch()) ||
n.IsUsing ("System.Threading.ReaderWriterLock".AllowNoMatch()) ||
n.IsUsing ("System.Threading.Mutex".AllowNoMatch()) ||
n.IsUsing ("System.Threading.EventWaitHandle".AllowNoMatch()) ||
n.IsUsing ("System.Threading.Semaphore".AllowNoMatch()) ||
n.IsUsing ("System.Threading.Interlocked".AllowNoMatch()))
&& !n.NameLike (@"^MyNamespace.Sync")
select n
]]></Query>
<Group Name="Check Coverage on particular Code Elements" Active="False" ShownInReport="False">
<Query Active="False" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Check that the assembly Asm is 100% covered by tests</Name>
warnif count > 0 from a in Application.Assemblies where
(a.Name == @"Asm") &&
a.PercentageCoverage < 100
select new { a, a.PercentageCoverage }
// To run this rule properly coverage data
// must be gathered from NCover™ or Visual Studio™ Coverage.
// This can be done throught the menu:
// NDepend -> Coverage -> Import Coverage Files
// This can be done at analysis time throught the menu:
// Project Properties -> Analysis -> Code Coverage
// More information on how to import coverage data here:
// http://www.ndepend.com/Coverage.aspx
]]></Query>
<Query Active="False" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Check that the namespace N1.N2 is 100% covered by tests</Name>
warnif count > 0 from n in Application.Namespaces where
(n.Name == @"N1.N2") &&
n.PercentageCoverage < 100
select new { n, n.PercentageCoverage }
// To run this rule properly coverage data
// must be gathered from NCover™ or Visual Studio™ Coverage.
// This can be done throught the menu:
// NDepend -> Coverage -> Import Coverage Files
// This can be done at analysis time throught the menu:
// Project Properties -> Analysis -> Code Coverage
// More information on how to import coverage data here:
// http://www.ndepend.com/Coverage.aspx
]]></Query>
<Query Active="False" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Check that the class Namespace.Foo is 100% covered by tests</Name>
warnif count > 0 from t in Application.Types where
(t.FullName == @"Namespace.Foo") &&
t.PercentageCoverage < 100
select new { t, t.PercentageCoverage }
// To run this rule properly coverage data
// must be gathered from NCover™ or Visual Studio™ Coverage.
// This can be done throught the menu:
// NDepend -> Coverage -> Import Coverage Files
// This can be done at analysis time throught the menu:
// Project Properties -> Analysis -> Code Coverage
// More information on how to import coverage data here:
// http://www.ndepend.com/Coverage.aspx
]]></Query>
<Query Active="False" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Check that the class Namespace.Foo.Method(Int32) is 100% covered by tests</Name>
warnif count > 0 from t in Application.Types where
(t.FullName == @"Namespace.Foo.Method(Int32)") &&
t.PercentageCoverage < 100
select new { t, t.PercentageCoverage }
// To run this rule properly coverage data
// must be gathered from NCover™ or Visual Studio™ Coverage.
// This can be done throught the menu:
// NDepend -> Coverage -> Import Coverage Files
// This can be done at analysis time throught the menu:
// Project Properties -> Analysis -> Code Coverage
// More information on how to import coverage data here:
// http://www.ndepend.com/Coverage.aspx
]]></Query>
</Group>
<Group Name="Custom Naming Conventions" Active="False" ShownInReport="False">
<Query Active="False" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Check that all types that derive from Foo, has a name that ends up with Foo</Name>
warnif count > 0 from t in Application.Types where
t.DeriveFrom ("Foo".AllowNoMatch().MatchType()) &&
!t.NameLike (@"Foo$")
select new { t, t.NbLinesOfCode }
]]></Query>
<Query Active="False" DisplayList="True" DisplayStat="True" DisplaySelectionView="False" IsCriticalRule="False"><![CDATA[// <Name>Check that all namespaces begins with CompanyName.ProductName</Name>
warnif count > 0 from n in Application.Namespaces where
!n.NameLike (@"^CompanyName.ProductName")
select new { n, n.NbLinesOfCode } ]]></Query>
</Group>
</Group>
</Queries>
<WarnFilter />
</NDepend>