[mob][photos] Move ONNX model initialization in abstract class

This commit is contained in:
laurenspriem
2024-07-02 17:18:40 +05:30
parent 55858eba0b
commit 53d5625499
3 changed files with 94 additions and 145 deletions

View File

@@ -1,79 +1,40 @@
import "dart:async";
import "dart:developer" as dev show log;
import "dart:io" show File;
import 'dart:typed_data' show ByteData;
import 'dart:ui' as ui show Image;
import "package:computer/computer.dart";
import 'package:logging/logging.dart';
import 'package:onnxruntime/onnxruntime.dart';
import "package:photos/face/model/dimension.dart";
import 'package:photos/services/machine_learning/face_ml/face_detection/detection.dart';
import "package:photos/services/machine_learning/face_ml/face_detection/face_detection_postprocessing.dart";
import "package:photos/services/remote_assets_service.dart";
import "package:photos/services/machine_learning/ml_model.dart";
import "package:photos/utils/image_ml_util.dart";
class YOLOFaceInterpreterRunException implements Exception {}
/// This class is responsible for running the face detection model (YOLOv5Face) on ONNX runtime, and can be accessed through the singleton instance [FaceDetectionService.instance].
class FaceDetectionService {
class FaceDetectionService extends MlModel {
static const kRemoteBucketModelPath = "yolov5s_face_640_640_dynamic.onnx";
@override
String get modelRemotePath => kModelBucketEndpoint + kRemoteBucketModelPath;
@override
Logger get logger => _logger;
static final _logger = Logger('FaceDetectionService');
final _computer = Computer.shared();
int sessionAddress = 0;
static const String kModelBucketEndpoint = "https://models.ente.io/";
static const String kRemoteBucketModelPath =
"yolov5s_face_640_640_dynamic.onnx";
static const String modelRemotePath =
kModelBucketEndpoint + kRemoteBucketModelPath;
static const int kInputWidth = 640;
static const int kInputHeight = 640;
static const double kIouThreshold = 0.4;
static const double kMinScoreSigmoidThreshold = 0.7;
static const int kNumKeypoints = 5;
bool isInitialized = false;
// Singleton pattern
FaceDetectionService._privateConstructor();
static final instance = FaceDetectionService._privateConstructor();
factory FaceDetectionService() => instance;
/// Check if the interpreter is initialized, if not initialize it with `loadModel()`
Future<void> init() async {
if (!isInitialized) {
_logger.info('init is called');
final model =
await RemoteAssetsService.instance.getAsset(modelRemotePath);
final startTime = DateTime.now();
sessionAddress = await _computer.compute(
_loadModel,
param: {
"modelPath": model.path,
},
);
final endTime = DateTime.now();
_logger.info(
"Face detection model loaded, took: ${(endTime.millisecondsSinceEpoch - startTime.millisecondsSinceEpoch).toString()}ms",
);
if (sessionAddress != -1) {
isInitialized = true;
}
}
}
Future<void> release() async {
if (isInitialized) {
await _computer
.compute(_releaseModel, param: {'address': sessionAddress});
isInitialized = false;
sessionAddress = 0;
}
}
/// Detects faces in the given image data.
static Future<(List<FaceDetectionRelative>, Dimensions)> predict(
ui.Image image,
@@ -184,30 +145,4 @@ class FaceDetectionService {
return relativeDetections;
}
/// Initialize the interpreter by loading the model file.
static Future<int> _loadModel(Map args) async {
final sessionOptions = OrtSessionOptions()
..setInterOpNumThreads(1)
..setIntraOpNumThreads(1)
..setSessionGraphOptimizationLevel(GraphOptimizationLevel.ortEnableAll);
try {
final session =
OrtSession.fromFile(File(args["modelPath"]), sessionOptions);
return session.address;
} catch (e, s) {
_logger.severe('Face detection model not loaded', e, s);
}
return -1;
}
static Future<void> _releaseModel(Map args) async {
final address = args['address'] as int;
if (address == 0) {
return;
}
final session = OrtSession.fromAddress(address);
session.release();
return;
}
}

View File

@@ -1,95 +1,33 @@
import "dart:io" show File;
import 'dart:math' as math show sqrt;
import 'dart:typed_data' show Float32List;
import 'package:computer/computer.dart';
import 'package:logging/logging.dart';
import 'package:onnxruntime/onnxruntime.dart';
import "package:photos/services/remote_assets_service.dart";
import "package:photos/services/machine_learning/ml_model.dart";
class MobileFaceNetInterpreterRunException implements Exception {}
/// This class is responsible for running the face embedding model (MobileFaceNet) on ONNX runtime, and can be accessed through the singleton instance [FaceEmbeddingService.instance].
class FaceEmbeddingService {
static const kModelBucketEndpoint = "https://models.ente.io/";
class FaceEmbeddingService extends MlModel {
static const kRemoteBucketModelPath = "mobilefacenet_opset15.onnx";
static const modelRemotePath = kModelBucketEndpoint + kRemoteBucketModelPath;
@override
String get modelRemotePath => kModelBucketEndpoint + kRemoteBucketModelPath;
@override
Logger get logger => _logger;
static final _logger = Logger('FaceEmbeddingService');
static const int kInputSize = 112;
static const int kEmbeddingSize = 192;
static const int kNumChannels = 3;
static const bool kPreWhiten = false;
static final _logger = Logger('FaceEmbeddingService');
bool isInitialized = false;
int sessionAddress = 0;
final _computer = Computer.shared();
// Singleton pattern
FaceEmbeddingService._privateConstructor();
static final instance = FaceEmbeddingService._privateConstructor();
factory FaceEmbeddingService() => instance;
/// Check if the interpreter is initialized, if not initialize it with `loadModel()`
Future<void> init() async {
if (!isInitialized) {
_logger.info('init is called');
final model =
await RemoteAssetsService.instance.getAsset(modelRemotePath);
final startTime = DateTime.now();
// Doing this from main isolate since `rootBundle` cannot be accessed outside it
sessionAddress = await _computer.compute(
_loadModel,
param: {
"modelPath": model.path,
},
);
final endTime = DateTime.now();
_logger.info(
"Face embedding model loaded, took: ${(endTime.millisecondsSinceEpoch - startTime.millisecondsSinceEpoch).toString()}ms",
);
if (sessionAddress != -1) {
isInitialized = true;
}
}
}
Future<void> release() async {
if (isInitialized) {
await _computer
.compute(_releaseModel, param: {'address': sessionAddress});
isInitialized = false;
sessionAddress = 0;
}
}
static Future<int> _loadModel(Map args) async {
final sessionOptions = OrtSessionOptions()
..setInterOpNumThreads(1)
..setIntraOpNumThreads(1)
..setSessionGraphOptimizationLevel(GraphOptimizationLevel.ortEnableAll);
try {
final session =
OrtSession.fromFile(File(args["modelPath"]), sessionOptions);
return session.address;
} catch (e, s) {
_logger.severe('Face embedding model not loaded', e, s);
}
return -1;
}
static Future<void> _releaseModel(Map args) async {
final address = args['address'] as int;
if (address == 0) {
return;
}
final session = OrtSession.fromAddress(address);
session.release();
return;
}
static Future<List<List<double>>> predict(
Float32List input,
int sessionAddress,

View File

@@ -0,0 +1,76 @@
import "dart:io" show File;
import "package:computer/computer.dart";
import "package:logging/logging.dart";
import "package:onnxruntime/onnxruntime.dart";
import "package:photos/services/remote_assets_service.dart";
abstract class MlModel {
Logger get logger;
String get kModelBucketEndpoint => "https://models.ente.io/";
static const kRemoteBucketModelPath = "";
String get modelRemotePath;
bool isInitialized = false;
int sessionAddress = 0;
final computer = Computer.shared();
Future<void> init() async {
if (!isInitialized) {
logger.info('init is called');
final model =
await RemoteAssetsService.instance.getAsset(modelRemotePath);
final startTime = DateTime.now();
try {
sessionAddress = await computer.compute(
_loadModel,
param: {
"modelPath": model.path,
},
);
isInitialized = true;
final endTime = DateTime.now();
logger.info(
"model loaded, took: ${(endTime.millisecondsSinceEpoch - startTime.millisecondsSinceEpoch).toString()}ms",
);
} catch (e, s) {
logger.severe('model not loaded', e, s);
}
}
}
Future<void> release() async {
if (isInitialized) {
await computer.compute(_releaseModel, param: {'address': sessionAddress});
isInitialized = false;
sessionAddress = 0;
}
}
static Future<int> _loadModel(Map args) async {
final sessionOptions = OrtSessionOptions()
..setInterOpNumThreads(1)
..setIntraOpNumThreads(1)
..setSessionGraphOptimizationLevel(GraphOptimizationLevel.ortEnableAll);
try {
final session =
OrtSession.fromFile(File(args["modelPath"]), sessionOptions);
return session.address;
} catch (e) {
rethrow;
}
}
static Future<void> _releaseModel(Map args) async {
final address = args['address'] as int;
if (address == 0) {
return;
}
final session = OrtSession.fromAddress(address);
session.release();
return;
}
}