[mob][photos] Add text embeddings cache service (#7130)

## Description

Add text embeddings cache service to prevent recomputes for:
- Memories
- Magic cache

## Tests

Tested in debug mode on my pixel phone.
This commit is contained in:
Laurens Priem
2025-09-10 18:01:53 +05:30
committed by GitHub
14 changed files with 153 additions and 3729 deletions

View File

@@ -196,6 +196,11 @@ lib/
- Ensure documentation reflects the current implementation
- Update examples in specs if behavior changes
### 5. Database Methods - BEST PRACTICE
**Prioritize readability in database methods**
- For small result sets (e.g., 1-2 stale entries), prefer filtering in Dart for cleaner, more readable code
- For large datasets, use SQL WHERE clauses for performance - they're much more efficient in SQLite
## Important Notes
- Large service files (some 70k+ lines) - consider file context when editing

File diff suppressed because it is too large Load Diff

View File

@@ -230,7 +230,6 @@ class SuperLogging {
} catch (e) {
$.warning("Failed to initialize log viewer: $e");
}
}
if (appConfig.body == null) return;
@@ -313,14 +312,14 @@ class SuperLogging {
saveLogString(str, rec.error);
// Hook for external log viewer (if available)
// This allows the log_viewer package to capture logs without creating a dependency
if(_logViewerCallback != null) {
try {
if (_logViewerCallback != null) {
_logViewerCallback!(rec, config.prefix);
if (_logViewerCallback != null) {
try {
if (_logViewerCallback != null) {
_logViewerCallback!(rec, config.prefix);
}
} catch (_) {
// Silently ignore any errors from the log viewer
}
} catch (_) {
// Silently ignore any errors from the log viewer
}
}
}

View File

@@ -62,6 +62,7 @@ class MLDataDB with SqlDbBase implements IMLDataDB<int> {
createClipEmbeddingsTable,
createFileDataTable,
createFaceCacheTable,
createTextEmbeddingsCacheTable,
];
// only have a single app-wide reference to the database
@@ -1429,6 +1430,56 @@ class MLDataDB with SqlDbBase implements IMLDataDB<int> {
Bus.instance.fire(EmbeddingUpdatedEvent());
}
/// WARNING: don't confuse this with [putClip]. If you're not sure, use [putClip]
Future<void> putRepeatedTextEmbeddingCache(
String query,
List<double> embedding,
) async {
final db = await asyncDB;
await db.execute(
'INSERT OR REPLACE INTO $textEmbeddingsCacheTable '
'($textQueryColumn, $embeddingColumn, $mlVersionColumn, $createdAtColumn) '
'VALUES (?, ?, ?, ?)',
[
query,
Float32List.fromList(embedding).buffer.asUint8List(),
clipMlVersion,
DateTime.now().millisecondsSinceEpoch,
],
);
}
/// WARNING: don't confuse this with [getAllClipVectors]. If you're not sure, use [getAllClipVectors]
Future<List<double>?> getRepeatedTextEmbeddingCache(String query) async {
final db = await asyncDB;
final results = await db.getAll(
'SELECT $embeddingColumn, $mlVersionColumn, $createdAtColumn '
'FROM $textEmbeddingsCacheTable '
'WHERE $textQueryColumn = ?',
[query],
);
if (results.isEmpty) return null;
final threeMonthsAgo =
DateTime.now().millisecondsSinceEpoch - (90 * 24 * 60 * 60 * 1000);
// Find first valid entry
for (final result in results) {
if (result[mlVersionColumn] == clipMlVersion &&
result[createdAtColumn] as int > threeMonthsAgo) {
return Float32List.view((result[embeddingColumn] as Uint8List).buffer);
}
}
// No valid entry found, clean up
await db.execute(
'DELETE FROM $textEmbeddingsCacheTable WHERE $textQueryColumn = ?',
[query],
);
return null;
}
@override
Future<void> deleteClipEmbeddings(List<int> fileIDs) async {
final db = await instance.asyncDB;

View File

@@ -16,6 +16,8 @@ const mlVersionColumn = 'ml_version';
const personIdColumn = 'person_id';
const clusterIDColumn = 'cluster_id';
const personOrClusterIdColumn = 'person_or_cluster_id';
const textQueryColumn = 'text_query';
const createdAtColumn = 'created_at';
const createFacesTable = '''CREATE TABLE IF NOT EXISTS $facesTable (
$fileIDColumn INTEGER NOT NULL,
@@ -137,3 +139,18 @@ CREATE TABLE IF NOT EXISTS $faceCacheTable (
''';
const deleteFaceCacheTable = 'DELETE FROM $faceCacheTable';
// ## TEXT EMBEDDINGS CACHE TABLE
const textEmbeddingsCacheTable = 'text_embeddings_cache';
const createTextEmbeddingsCacheTable = '''
CREATE TABLE IF NOT EXISTS $textEmbeddingsCacheTable (
$textQueryColumn TEXT NOT NULL,
$embeddingColumn BLOB NOT NULL,
$mlVersionColumn INTEGER NOT NULL,
$createdAtColumn INTEGER NOT NULL,
PRIMARY KEY ($textQueryColumn)
);
''';
const deleteTextEmbeddingsCacheTable = 'DELETE FROM $textEmbeddingsCacheTable';

View File

@@ -1,4 +1,4 @@
import 'dart:async';
import 'dart:async';
import 'dart:io';
import "package:adaptive_theme/adaptive_theme.dart";

View File

@@ -19,6 +19,7 @@ import "package:photos/services/smart_albums_service.dart";
import "package:photos/services/smart_memories_service.dart";
import "package:photos/services/storage_bonus_service.dart";
import "package:photos/services/sync/trash_sync_service.dart";
import "package:photos/services/text_embeddings_cache_service.dart";
import "package:photos/services/update_service.dart";
import "package:photos/utils/local_settings.dart";
import "package:shared_preferences/shared_preferences.dart";
@@ -136,6 +137,12 @@ SmartMemoriesService get smartMemoriesService {
return _smartMemoriesService!;
}
TextEmbeddingsCacheService? _textEmbeddingsCacheService;
TextEmbeddingsCacheService get textEmbeddingsCacheService {
_textEmbeddingsCacheService ??= TextEmbeddingsCacheService.instance;
return _textEmbeddingsCacheService!;
}
BillingService? _billingService;
BillingService get billingService {
_billingService ??= BillingService(

View File

@@ -193,15 +193,22 @@ class SemanticSearchService {
return results;
}
Future<Map<String, List<int>>> getMatchingFileIDs(
/// Get matching file IDs for common repeated queries like smart memories and magic cache.
/// WARNING: Use this method carefully - it uses persistent caching which is only
/// beneficial for queries that are repeated across app sessions.
/// For regular user searches, use getMatchingFiles instead.
Future<Map<String, List<int>>> getMatchingFileIDsForCommonQueries(
Map<String, double> queryToScore,
) async {
final textEmbeddings = <String, List<double>>{};
final minimumSimilarityMap = <String, double>{};
for (final entry in queryToScore.entries) {
final query = entry.key;
final score = entry.value;
final textEmbedding = await _getTextEmbedding(query);
// Use cache service instead of _getTextEmbedding
final textEmbedding =
await textEmbeddingsCacheService.getEmbedding(query);
textEmbeddings[query] = textEmbedding;
minimumSimilarityMap[query] = score;
}
@@ -210,6 +217,7 @@ class SemanticSearchService {
textEmbeddings,
minimumSimilarityMap: minimumSimilarityMap,
);
final result = <String, List<int>>{};
for (final entry in queryResults.entries) {
final query = entry.key;

View File

@@ -401,8 +401,8 @@ class MagicCacheService {
for (Prompt prompt in magicPromptsData) {
queryToScore[prompt.query] = prompt.minScore;
}
final clipResults =
await SemanticSearchService.instance.getMatchingFileIDs(queryToScore);
final clipResults = await SemanticSearchService.instance
.getMatchingFileIDsForCommonQueries(queryToScore);
for (Prompt prompt in magicPromptsData) {
final List<int> fileUploadedIDs = clipResults[prompt.query] ?? [];
if (fileUploadedIDs.isNotEmpty) {

View File

@@ -37,7 +37,6 @@ import "package:photos/services/location_service.dart";
import "package:photos/services/machine_learning/face_ml/person/person_service.dart";
import "package:photos/services/machine_learning/ml_result.dart";
import "package:photos/services/search_service.dart";
import "package:photos/utils/text_embeddings_util.dart";
class MemoriesResult {
final List<SmartMemory> memories;
@@ -103,18 +102,29 @@ class SmartMemoriesService {
'allImageEmbeddings has ${allImageEmbeddings.length} entries $t',
);
// Load pre-computed text embeddings from assets
final textEmbeddings = await loadTextEmbeddingsFromAssets();
if (textEmbeddings == null) {
_logger.severe('Failed to load pre-computed text embeddings');
throw Exception(
'Failed to load pre-computed text embeddings',
_logger.info('Loading text embeddings via cache service');
final clipPositiveTextVector = Vector.fromList(
await textEmbeddingsCacheService.getEmbedding(
"Photo of a precious and nostalgic memory radiating warmth, vibrant energy, or quiet beauty — alive with color, light, or emotion",
),
);
final clipPeopleActivityVectors = <PeopleActivity, Vector>{};
for (final activity in PeopleActivity.values) {
final query = activityQuery(activity);
clipPeopleActivityVectors[activity] = Vector.fromList(
await textEmbeddingsCacheService.getEmbedding(query),
);
}
_logger.info('Using pre-computed text embeddings from assets');
final clipPositiveTextVector = textEmbeddings.clipPositiveVector;
final clipPeopleActivityVectors = textEmbeddings.peopleActivityVectors;
final clipMemoryTypeVectors = textEmbeddings.clipMemoryTypeVectors;
final clipMemoryTypeVectors = <ClipMemoryType, Vector>{};
for (final memoryType in ClipMemoryType.values) {
final query = clipQuery(memoryType);
clipMemoryTypeVectors[memoryType] = Vector.fromList(
await textEmbeddingsCacheService.getEmbedding(query),
);
}
_logger.info('Text embeddings loaded via cache service');
final local = await getLocale();
final languageCode = local?.languageCode ?? "en";

View File

@@ -0,0 +1,29 @@
import 'package:logging/logging.dart';
import 'package:photos/db/ml/db.dart';
import 'package:photos/services/machine_learning/ml_computer.dart';
class TextEmbeddingsCacheService {
static final _logger = Logger('TextEmbeddingsCacheService');
TextEmbeddingsCacheService._privateConstructor();
static final instance = TextEmbeddingsCacheService._privateConstructor();
Future<List<double>> getEmbedding(String query) async {
// 1. Check database cache
final dbResult =
await MLDataDB.instance.getRepeatedTextEmbeddingCache(query);
if (dbResult != null) {
_logger.info('Text embedding cache hit for query');
return dbResult;
}
// 2. Compute new embedding
_logger.info('Computing new text embedding for query');
final embedding = await MLComputer.instance.runClipText(query);
// 3. Store in database cache
await MLDataDB.instance.putRepeatedTextEmbeddingCache(query, embedding);
return embedding;
}
}

View File

@@ -1,172 +0,0 @@
import 'dart:convert';
import "dart:developer" as dev show log;
import "dart:io" show File;
import 'package:flutter/services.dart';
import 'package:logging/logging.dart';
import 'package:ml_linalg/vector.dart';
import "package:path_provider/path_provider.dart"
show getExternalStorageDirectory;
import 'package:photos/models/memories/clip_memory.dart';
import 'package:photos/models/memories/people_memory.dart';
import "package:photos/services/machine_learning/ml_computer.dart"
show MLComputer;
final _logger = Logger('TextEmbeddingsUtil');
/// Loads pre-computed text embeddings from assets
Future<TextEmbeddings?> loadTextEmbeddingsFromAssets() async {
try {
_logger.info('Loading text embeddings from assets');
final jsonString =
await rootBundle.loadString('assets/ml/text_embeddings.json');
final data = json.decode(jsonString) as Map<String, dynamic>;
final embeddings = data['embeddings'] as Map<String, dynamic>;
// Parse clip positive embedding
Vector? clipPositiveVector;
final clipPositive = embeddings['clip_positive'] as Map<String, dynamic>;
final clipPositiveVectorData =
(clipPositive['vector'] as List).cast<double>();
if (clipPositiveVectorData.isNotEmpty) {
clipPositiveVector = Vector.fromList(clipPositiveVectorData);
}
// Parse people activities embeddings
final Map<PeopleActivity, Vector> peopleActivityVectors = {};
final peopleActivities =
embeddings['people_activities'] as Map<String, dynamic>;
for (final activity in PeopleActivity.values) {
final activityName = activity.toString().split('.').last;
if (peopleActivities.containsKey(activityName)) {
final activityData =
peopleActivities[activityName] as Map<String, dynamic>;
final vector = (activityData['vector'] as List).cast<double>();
if (vector.isNotEmpty) {
peopleActivityVectors[activity] = Vector.fromList(vector);
}
}
}
// Parse clip memory types embeddings
final Map<ClipMemoryType, Vector> clipMemoryTypeVectors = {};
final clipMemoryTypes =
embeddings['clip_memory_types'] as Map<String, dynamic>;
for (final memoryType in ClipMemoryType.values) {
final typeName = memoryType.toString().split('.').last;
if (clipMemoryTypes.containsKey(typeName)) {
final typeData = clipMemoryTypes[typeName] as Map<String, dynamic>;
final vector = (typeData['vector'] as List).cast<double>();
if (vector.isNotEmpty) {
clipMemoryTypeVectors[memoryType] = Vector.fromList(vector);
}
}
}
// Check if we have all required embeddings
if (clipPositiveVector == null) {
_logger.severe('Clip positive vector is missing');
throw Exception('Clip positive vector is missing');
}
if (peopleActivityVectors.length != PeopleActivity.values.length) {
_logger.severe('Some people activity vectors are missing');
throw Exception('Some people activity vectors are missing');
}
if (clipMemoryTypeVectors.length != ClipMemoryType.values.length) {
_logger.severe('Some clip memory type vectors are missing');
throw Exception('Some clip memory type vectors are missing');
}
_logger.info('Text embeddings loaded successfully from JSON assets');
return TextEmbeddings(
clipPositiveVector: clipPositiveVector,
peopleActivityVectors: peopleActivityVectors,
clipMemoryTypeVectors: clipMemoryTypeVectors,
);
} catch (e, stackTrace) {
_logger.severe('Failed to load text embeddings from JSON', e, stackTrace);
return null;
}
}
class TextEmbeddings {
final Vector clipPositiveVector;
final Map<PeopleActivity, Vector> peopleActivityVectors;
final Map<ClipMemoryType, Vector> clipMemoryTypeVectors;
const TextEmbeddings({
required this.clipPositiveVector,
required this.peopleActivityVectors,
required this.clipMemoryTypeVectors,
});
}
/// Helper function to generate text embeddings and save them to a JSON file
/// Run this once to generate the embeddings, then copy the output
/// to assets/ml/text_embeddings.json
Future<void> generateAndSaveTextEmbeddings() async {
final Map<String, dynamic> embeddingsData = {
'version': '1.0.0',
'embeddings': {
'clip_positive': {},
'people_activities': {},
'clip_memory_types': {},
},
};
// Generate clip positive embedding
const String clipPositiveQuery =
'Photo of a precious and nostalgic memory radiating warmth, vibrant energy, or quiet beauty — alive with color, light, or emotion';
final clipPositiveVector =
await MLComputer.instance.runClipText(clipPositiveQuery);
embeddingsData['embeddings']['clip_positive'] = {
'prompt': clipPositiveQuery,
'vector': clipPositiveVector,
};
// Generate people activity embeddings
final peopleActivities = <String, dynamic>{};
for (final activity in PeopleActivity.values) {
final activityName = activity.toString().split('.').last;
final prompt = activityQuery(activity);
final vector = await MLComputer.instance.runClipText(prompt);
peopleActivities[activityName] = {
'prompt': prompt,
'vector': vector,
};
}
embeddingsData['embeddings']['people_activities'] = peopleActivities;
// Generate clip memory type embeddings
final clipMemoryTypes = <String, dynamic>{};
for (final memoryType in ClipMemoryType.values) {
final typeName = memoryType.toString().split('.').last;
final prompt = clipQuery(memoryType);
final vector = await MLComputer.instance.runClipText(prompt);
clipMemoryTypes[typeName] = {
'prompt': prompt,
'vector': vector,
};
}
embeddingsData['embeddings']['clip_memory_types'] = clipMemoryTypes;
// Convert to JSON and log it
final jsonString = const JsonEncoder.withIndent(' ').convert(embeddingsData);
dev.log(
'_generateAndSaveTextEmbeddings: Generated text embeddings JSON',
);
final tempDir = await getExternalStorageDirectory();
final file = File('${tempDir!.path}/text_embeddings.json');
await file.writeAsString(jsonString);
dev.log(
'_generateAndSaveTextEmbeddings: Saved text embeddings to ${file.path}',
);
dev.log(
'_generateAndSaveTextEmbeddings: Text embeddings generation complete! Copy the JSON output above to assets/ml/text_embeddings.json',
);
}

View File

@@ -349,7 +349,6 @@ flutter:
- assets/image-editor/
- assets/icons/
- assets/launcher_icon/
- assets/ml/
fonts:
- family: Inter
fonts:

View File

@@ -1,2 +1,3 @@
- Neeraj: Potential fix for ios in-app payment
- Neeraj: (i) Debug option to enable logViewer
- Laurens: text embedding caching for memories and discover
- Neeraj: (i) Debug option to enable logViewer
- Neeraj: Potential fix for ios in-app payment